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A common technique for verifying the safety of complex systems is the inductive invariant method. Inductive
invariants are inductive formulas that overapproximate the reachable states of a system and imply a desired
safety property. However, inductive invariants are notoriously complex, which makes inductive invariant
inference a challenging problem. In this work, we observe that inductive invariant formulas are complex
primarily because they must be closed over the transition relation of an entire system. Therefore, we propose a
new approach in which we decompose a system into components, assign an assume-guarantee contract to each
component, and prove that each component fulfills its contract by inferring a local inductive invariant. The
key advantage of local inductive invariant inference is that the local invariant need only be closed under the
transition relation for the component, which is simpler than the transition relation for the entire system. Once
local invariant inference is complete, system-wide safety follows by construction because the conjunction of
all local invariants becomes an inductive invariant for the entire system. We apply our compositional inductive
invariant inference technique to two case studies, in which we provide evidence that our framework can
infer invariants more efficiently than the global technique. Our case studies also show that local inductive
invariants provide modular insights about a specification that are not offered by global invariants.
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1 Introduction
A common approach to verifying the safety of complex systems, such as distributed protocols, is
to find an inductive invariant. An inductive invariant is a logical formula that overapproximates
the reachable state space of a system (invariance), is closed with respect to the system’s transition
relation (inductiveness), and also implies safety; together, these conditions imply that the system is
safe. However, inductive invariant formulas can be notoriously large and complex, even for smaller
systems. As a result, the important problem of inductive invariant inference remains a significant
research challenge.

Over the past several decades, researchers have developed principled approaches for traversing
the large space of candidate inductive invariant formulas. One common type of method is the
incremental approach [3, 15, 24, 25, 31, 47] that accumulates non-inductive invariants–referred
to as lemmas–until their conjunction becomes inductive. Yet another approach is to efficiently
perform a bounded enumeration of candidate formulas [19, 51]. Techniques such as these have
made inductive invariant inference applicable to a larger range of systems, and have been used to
automatically verify sophisticated distributed protocols such as Paxos [27].
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Despite progress in taming the search space, state-of-the-art techniques still struggle to infer
complex inductive invariants that are necessary for verifying large systems. Our key observation is
that inductive invariants become large and complex primarily because the formula must be closed
under the transition relation of the entire system. Therefore, instead of attempting to synthesize a
global invariant for the entire system, in this paper, we propose a compositional approach that aims
to find multiple simpler inductive invariants. Our approach involves decomposing a specification
into components and separately inferring a local inductive invariant for each component. Local
inductive invariants are only required to be closed under the transition relation of the corresponding
component, rather than the entire system. The advantage to local inductive invariant inference
is that each component has a simpler transition relation than the overall system and, therefore,
presents a simpler inference task.
Our proposed compositional approach is based on a novel assume-guarantee reasoning [45, 14]

theory. Assume-guarantee reasoning is a verification paradigm in which each component C is
assigned an individual proof obligation ⟨𝛼⟩C ⟨𝛾⟩ called a contract. Intuitively, a contract establishes
that C guarantees the property 𝛾 under the assumption 𝛼 . In our theory, the goal is to infer a local
inductive invariant for each component to show that it fulfills its contract.

In order to define an assume-guarantee theory that allows for proof via local inductive invariant,
we consider both action-based and state-based behavioral semantics. The need to consider both
semantic paradigms arises because assume-guarantee contracts are a means for both composition

and proof localization. On the one hand, action-based semantics are convenient for composing
contracts because components can be treated algebraically and composed via parallel composition.
For example, action-based composition styles from CSP [21] and the 𝜋-calculus [35] are often used
in assume-guarantee reasoning for concurrent and distributed systems [29, 30]. On the other hand,
proofs via (local) inductive invariants require state-based semantics because inductive invariants
are formulas over state variables.

In this paper, we introduce a two-layered assume-guarantee theory that offers the advantages of
both semantic paradigms. The top layer of the theory is action-based and intended for compositional
reasoning, while the bottom layer is state-based and intended for proof via local inductive invariant.
In the two-layer approach, we decompose a system into action-based contracts in the top layer
theory, which we then translate to state-based contracts in the bottom-layer theory to be proved.
The key to translating contracts from the action-based theory to the state-based theory is a novel
logic language that we propose called Symbolic Fluent Linear Temporal Logic (SFL). SFL formulas
are action-based, but can be translated to a semantically equivalent state-based formula. In other
words, given an action-based contract ⟨𝛼⟩C ⟨𝛾⟩ where 𝛼 and 𝛾 are SFL formulas, we can translate
it to an equivalent state-based contract ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ where A and G are state-based formulas.
Using our two-layered assume-guarantee theory, we present the first divide-and-conquer

approach to inductive invariant inference. The approach involves four steps, which are shown
in Fig. 1. Given a system that we wish to verify, the first step is to decompose it into a set of
components. The second step is to find SFL formulas 𝛼 and 𝛾 for each component C to create a
candidate action-based contract ⟨𝛼⟩C ⟨𝛾⟩. Third, for each component, we infer a local inductive
invariant that proves its corresponding state-based contract ⟨⟨A⟩⟩C ⟨⟨G⟩⟩. Local inductive invariant
inference reduces to the usual inductive invariant inference problem, which can be accomplished
using existing search-based techniques. Therefore, our work is complementary to–rather than a
replacement for–existing work in inductive invariant inference. The fourth and final step is to
take the conjunction of all local inductive invariants; by construction, the resulting formula is an
inductive invariant for the entire system.

We evaluate our technique on two case studies of distributed protocols, the first of which is the
classic Two Phase Commit Protocol [17]. The second case study is an industrial-scale protocol of a
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S ⊧ □ P

C1 ∥ … ∥ Cn ⊧ □ P

I1 ⊢ ⟨α1⟩C1⟨γ1⟩ In ⊢ ⟨αn⟩Cn⟨γn⟩…
I1 ∧ … ∧ In ⊢ ⟨True⟩S⟨P⟩

⟨α1⟩C1⟨γ1⟩ ⟨αn⟩Cn⟨γn⟩…

Verification Problem

(1) Decompose

(2) Create Contracts

(3) Infer Local Invariants

(4) Global Safety

Fig. 1. Overview of our compositional inductive invariant inference framework. Each layer in the figure
represents an equivalent verification problem. From top to bottom, the figure shows the original verification
problem, decomposition of the system S into components, creation of assume-guarantee contracts for each
component, local inductive invariant inference for each component, and proof of global safety by construction.
The notation I ⊢ ⟨𝛼⟩C ⟨𝛾⟩ indicates that I is a local inductive invariant for the assume-guarantee contract.

Raft [40] style algorithm that runs at MongoDB [36]. While the MongoDB case study is beyond the
reach of all existing automatic inductive invariant inference techniques, we use our compositional
inference framework to infer an inductive invariant semi-automatically. Our results in the two
case studies provide evidence that our divide-and-conquer approach can be more efficient than
the global approach for inductive invariant inference. Additionally, we show that the artifacts
from compositional inference–local inductive invariants and assume-guarantee contracts–provide
valuable insights into the behaviors of the system that the global approach does not offer.

In summary, our contributions are:
(1) A two-layered assume-guarantee theory, whose contracts we prove using the novel proof by

local inductive invariant method,
(2) Symbolic Fluent Linear Temporal Logic (SFL), a logic language for specifying action-based

behavioral properties of parameterized systems,
(3) A compositional verification framework driven by a divide-and-conquer inductive invariant

inference algorithm,
(4) Two case studies in which we show the efficacy of our verification framework and highlight

the insights that the compositional approach offers about the verified system.
The rest of the paper is structured as follows. In Sec. 2 we introduce the running example and

background information for the paper. In Sec. 3 we introduce the bottom layer state-based theory,
followed by the top layer action-based theory in Sec. 4. Using the two layered assume-guarantee
theory, we introduce our compositional inductive invariant inference framework in Sec. 5. We
present the case studies in our evaluation in Sec. 6, followed by a survey of related work in Sec. 7.
Finally, we conclude in Sec. 8 with a discussion of the limitations of this paper and future work.

2 Background
We now introduce background information, including the running example, the TLA+ formal
specification language, parameterized systems, and the inductive invariant proof method.

Running Example: Toy-2PC. We now introduce a toy version of the classic Two Phase Commit
protocol [17], Toy-2PC, which we use as a running example throughout the paper. Toy-2PC is a
distributed database commit protocol in which a transaction manager (TM) communicates with a

, Vol. 1, No. 1, Article . Publication date: July 2025.



4 Ian Dardik and Eunsuk Kang

set of resource managers (RMs) in attempt to commit a database transaction. The protocol unfolds
over two phases, which we now describe. In the first phase, each RM starts in the working state
as it attempts to commit the transaction; any RM that can commit a transaction sends a prepared
message to the TM. In the second phase, the TM will issue a commit message to each RM if they
are all prepared, or an abort message otherwise. The safety property for the protocol is consistency,
meaning that no two RMs should disagree as to whether a transaction was committed or aborted.
For simplicity, Toy-2PC assumes a perfect network, while the original protocol allows messages to
be delayed, dropped, and reordered.

TLA
+
. We will use the TLA+ formal specification language [26] for the running example as well

as our case studies. TLA+ is based on first-order logic (FOL) and temporal logic, and is often used
for specifying parameterized symbolic transition systems and their temporal properties.

For example, Fig. 2 shows a specification for Toy-2PC. In Fig. 2, lines 1 and 2 of the specification
respectively declare parameters (via the constant keyword) and state variables (via the variables
keyword). Lines 3-6 specify the initial state predicate, while the remainder of the specification
encodes the actions of the symbolic transition relation. The symbolic transition relation is the
formula ∃r ∈ RMs : Prepare (r ) ∨Commit (r ) ∨Abort (r ) ∨SilentAbort (r ); however, for brevity,
we will omit the transition relation formula from the specifications shown in this paper. In the
actions, prime operators (’) are used to denote the value of a variable at the following time step
and the unchanged keyword explicitly indicates the frame condition for an action. The notation
on line 4 uses square brackets to define rmState as a function, while the notation using except
on line 11 changes one value of the function rmState . Line 8 accesses the value of the rmState
function, while line 13 uses angle brackets to specify a tuple.

The safety property Consistent for the Toy-2PC protocol can be written as an invariant in TLA+,
shown in Fig. 3. An invariant is a formula of the form2P , where2 is the always temporal operator
and P is a non-temporal FOL formula. Oftentimes, we will also refer to non-temporal FOL formulas
as invariants, in which case the outer 2 is implied; this is the case for the formula for Consistent .
One can prove that the Toy-2PC protocol satisfies 2Consistent using the inductive invariant proof
method, which we describe later in this section.

Parameterized Symbolic Transition Systems. A parameterized symbolic transition system (PSTS)
is an indexed triple (vars, Init,Next)p , where p is a (possibly empty) set of parameters, vars
is a set of state variables, and Init and Next are first-order logic formulas for the initial-state
constraint and the symbolic transition relation respectively. Syntactically, Init may reference the
parameters in p and the variables in vars , while Next may reference the parameters in p and the
variables in vars ∪ vars ′, where vars ′ = {v ′ | v ∈ vars}. For example, the TLA+ specification
for Toy-2PC in Fig. 2 defines a PSTS (vars, Init,Next) {RMs } , where vars and Init are defined
in Fig. 2, and Next is the (existentially quantified) disjunction of the actions in the specification
∃r ∈ RMs : Prepare (r ) ∨ . . . Parameters are also associated with domains, e.g., RMs is associated
with a countably infinite set of possible resource managers.

We will use the notation Act S to denote the alphabet of a PSTS S , Params (S ) for the set
of parameters, and SV (S ) for the set of state variables. We consider actions to be event formu-

las, meaning that we will treat them as both events (e.g., in alphabets) and formulas (e.g., in
the transition relation). We also overload Params (F ) and SV (F ) to denote the set of param-
eters and the set of state variables for a formula F . As an example, we have Act Toy2PC =

{Prepare (rm),Commit (rm), Abort (rm), SilentAbort (rm)}, Params (Toy2PC ) = {RMs}, and
SV (Toy2PC ) = {rmState, tmState, tmPrepared }. Notice that, as event formulas, actions such as
Prepare (rm) appear in Act Toy2PC , but also have formula definitions in Fig. 2.
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module ToyTwoPhase
constant RMs1

variables rmState, tmState, tmPrepared2

Init Δ
=3

∧ rmState = [rm ∈ RMs ↦→ “working”]4

∧ tmState = “init”5

∧ tmPrepared = {}6

Prepare (rm) Δ
=7

∧ rmState [rm] = “working”8

∧ tmState = “init”9

∧ rmState′ =10

[rmState except ! [rm] = “prepared”]11

∧ tmPrepared ′ = tmPrepared ∪ {rm}12

∧ unchanged ⟨tmState⟩13

Commit (rm) Δ
=14

∧ tmState ∈ {“init”, “commit”}15

∧ tmPrepared = RMs16

∧ rmState′ = [rmState except ! [rm] = “commit”]17

∧ tmState′ = “commit”18

∧ unchanged ⟨tmPrepared⟩19

Abort (rm) Δ
=20

∧ tmState ∈ {“init”, “abort”}21

∧ rmState′ = [rmState except ! [rm] = “abort”]22

∧ tmState′ = “abort”23

∧ unchanged ⟨tmPrepared⟩24

SilentAbort (rm) Δ
=25

∧ rmState [rm] = “working”26

∧ rmState′ = [rmState except ! [rm] = “abort”]27

∧ unchanged ⟨tmState, tmPrepared⟩28

Fig. 2. The TLA+ specification for Toy-2PC.

Consistent Δ
= ∀ r1, r2 ∈ RMs : ¬(rmState [r1] = “abort” ∧ rmState [r2] = “commit”)

Fig. 3. The definition for Consistent , the key safety property of Toy-2PC.

We will consider state-based and action-based behaviors in this paper. State-based and action-
based behaviors are sequences of states and actions respectively, where a state is an assignment to
variables and an action is an event formula as described above. We use subscripts to denote the i th
state or action of a behavior. If 𝜏 is a state-based behavior and i ≥ 0, then 𝜏i |= P if and only if the
formula P is valid when replacing each (non-primed) variable in P with the value assigned to by
𝜏i . If 𝜎 is an action-based behavior, i ≥ 0, and s and t are states, then (s, t) |= 𝜎i if and only if the
event formula 𝜎i is valid when replacing each non-primed variable in 𝜎i with the values assigned
to by s , and each primed variable with the value assigned to by t .

A behavior satisfies a PSTS if and only if it satisfies all of its instances. An instance of a PSTS is a
symbolic transition system (vars, Init,Next)p̂ , where p̂ is a function that maps each parameter
to a subset of its domain. For example, p̂ = [RMs ↦→ {rm1, rm2}] corresponds to an instance for
Toy-2PC. Given a state-based behavior 𝜏 and a symbolic transition system S = (vars, Init,Next)p̂ ,
𝜏 |= S if and only if 𝜏0 |= Init and, for each i ≥ 0, (𝜏i , 𝜏i+1) |= Next . Given an action-based behavior
𝜎 and a symbolic transition system S , 𝜎 |= S if and only if there exists a state-based behavior 𝜏
such that 𝜏 |= S and, for each i ≥ 0, (𝜏i , 𝜏i+1) |= 𝜎i . We will use the notation L(S ) to denote the
language of S , which is the set of all action-based behaviors that satisfy S . In a given state s , we
say that an action a is enabled if there exists a state t such that (s, t) |= a . We call S deterministic

if, for all states s , t1, and t2 and any action a , it is the case that (s, t1) |= a and (s, t2) |= a implies
t1 = t2.

Let Si = (varsi , Initi ,Nexti )p for i ∈ {1, 2}, where vars1 ∩ vars2 = ∅. We define parallel compo-
sition over PSTSs as follows: S1 ∥ S2 ≜ (vars1 ∪ vars2, Init1 ∧ Init2,Next)p , where the symbolic
transition relation Next is defined as:

, Vol. 1, No. 1, Article . Publication date: July 2025.



6 Ian Dardik and Eunsuk Kang

module ToyRM
constant RMs
variables rmState

Init Δ
= rmState = [rm ∈ RMs ↦→ “working”]

Prepare (rm) Δ
=

∧ rmState [rm] = “working”
∧ rmState′ =
[rmState except ! [rm] = “prepared”]

Commit (rm) Δ
=

∧ rmState′ =
[rmState except ! [rm] = “commit”]

Abort (rm) Δ
=

∧ rmState′ =
[rmState except ! [rm] = “abort”]

SilentAbort (rm) Δ
=

∧ rmState [rm] = “working”
∧ rmState′ =
[rmState except ! [rm] = “abort”]

module ToyTM
constant RMs
variables tmState, tmPrepared

Init Δ
=

∧ tmState = “init”
∧ tmPrepared = {}

Prepare (rm) Δ
=

∧ tmState = “init”
∧ tmPrepared ′ = tmPrepared ∪ {rm}
∧ unchanged ⟨tmState⟩

Commit (rm) Δ
=

∧ tmState ∈ {“init”, “commit”}
∧ tmPrepared = RMs
∧ tmState′ = “commit”
∧ unchanged ⟨tmPrepared⟩

Abort (rm) Δ
=

∧ tmState ∈ {“init”, “abort”}
∧ tmState′ = “abort”
∧ unchanged ⟨tmPrepared⟩

Fig. 4. Toy-2PC decomposed into two components, ToyRM and ToyTM .

∨
a ∈ Act S


∃d ∈ D : S1!a ∧ S2!a if a ∈ Act S1 and a ∈ Act S2
∃d ∈ D : S1!a ∧ S2!vars ′ = S2!vars if a ∈ Act S1 and a ∉ Act S2
∃d ∈ D : S1!vars ′ = S1!vars ∧ S2!a if a ∉ Act S1 and a ∈ Act S2

Here, ∃d ∈ D quantifies over the parameters associated with each action a (d appears syntactically
in a), the operator ! indicates the scope of the definition for a formula, and Act S = (Act S1) ∪
(Act S2). Essentially, the symbolic transition relation synchronizes actions that are shared between
components and interleaves unshared actions. We remark that parallel composition is only defined
for PSTSs that have the same parameters p but do not share any state variables. As an example,
consider the decomposition of the Toy-2PC specification shown in Fig. 4. In this case, we have
Toy2PC = ToyRM ∥ ToyTM . We refer toToyRM andToyTM as the components of the Toy-2PC
system.

The Inductive Invariant Proof Method. Because PSTS are families of transition systems, typical
model checking techniques, such as explicit-state enumeration and symbolic model checking, are
generally insufficient for verification. Instead, verification is usually performed using the inductive
invariant proof method. This method proves that a PSTS (vars, Init,Next)p satisfies an invariant
2P by finding a formula Inv , called an inductive invariant, that satisfies the following three
equations:

Init =⇒ Inv (1)
Inv ∧ Next =⇒ Inv ′ (2)
Inv =⇒ P (3)
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Equation (1) is called initiation and (2) is called consecution; together, these conditions show that Inv
is an overapproximation of the reachable states of the transition system. On the other hand, equation
(3) shows that Inv is an underapproximation of the invariant 2P . Together, the three conditions
above imply that the transition system is safe. The problem of inductive invariant inference is the
task of finding an inductive invariant that can be used to verify a system. We refer to any technique
that finds Inv directly–without decomposing the system–as a global inductive invariant inference
technique.

3 State-Based Assume-Guarantee Theory
In this section, we present our state-based assume-guarantee theory that occupies the bottom of
our two-layered theory. We begin in Sec. 3.1 by defining state-based contracts, as well as the local
inductive invariant proof technique for proving that a state-based contract is fulfilled. Subsequently,
in Sec. 3.2, we present inference rules for composing state-based contracts and their local inductive
invariants. Although the state-based theory is not intended for composition, we use concepts
from the action-based theory (e.g., parallel composition over components) to create composition
rules. Ultimately, these composition rules are not intended to be used directly for verification, but
they will simplify our definitions for the composition rules in the action-based theory. Finally, we
dedicate Appendix B to proving that these composition rules are sound.

3.1 State-Based Contracts and Local Inductive Invariants
We will use the notation ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ for contracts in our state-based theory, where G is the
guarantee that the component C must satisfy under the assumption A. We base contracts on
invariance, meaning that the component may assume A at all time steps, but must also guarantee G
at all time steps. Therefore, the proof obligation of a contract is to satisfy the invariantG , while only
considering those states of C that satisfy A. We capture this formally in the following definition.

Definition 3.1. Let C = (vars, Init,Next)p be a PSTS, and let A and G be non-temporal FOL
formulas such that SV (A) ∪ SV (G) ⊆ vars and Params (A) ∪ Params (G) ⊆ p. A contract
⟨⟨A⟩⟩C ⟨⟨G⟩⟩ is fulfilled if and only if (vars, Init ∧ A,Next ∧ A′)p |= 2G . We will denote contract
fulfillment with the notation ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩.

As an example, consider the ToyRM component in the Toy-2PC protocol, shown in Fig. 4. If we
assume–strictly for the sake of demonstration–that no resource manager will ever abort, then it is
possible to prove that ToyRM guarantees the safety property Consistent , shown in Fig. 3. If we
let NoAbort = ∀ r ∈ RMs : rmState [r ] ≠ “abort”, then ⊢ ⟨⟨NoAbort⟩⟩ToyRM ⟨⟨Consistent⟩⟩.

Unfortunately, conventional model-checking techniques cannot be used to show that the above
contract is fulfilled because ToyRM is parameterized with an infinite domain. Therefore, we
turn our attention to a more powerful technique for showing contract fulfillment called the local
inductive invariant proof method. In this proof method, one must find a formula I that is an
inductive invariant for the component under an assumption A, meaning that A can be assumed to
hold at all time steps. We will use the notation I ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ to mean that I is a local inductive
invariant that proves that the corresponding contract is fulfilled.

Definition 3.2. Let C = (vars, Init,Next)p be a PSTS, ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ be a contract, and I be a non-
temporal FOL formula such that SV (I ) ⊆ vars andParams (I ) ⊆ p. Thenwewrite I ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩
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8 Ian Dardik and Eunsuk Kang

to mean that the following three equations are valid:

Init ∧ A =⇒ I (4)
I ∧ Next ∧ A ∧ A′ =⇒ I ′ (5)
I =⇒ G (6)

In the Toy-2PC example, NoAbort serves as a local inductive invariant to prove the contract
from above, so we additionally write NoAbort ⊢ ⟨⟨NoAbort⟩⟩ToyRM ⟨⟨Consistent⟩⟩. Finally, we
conclude this subsection by showing that finding a local inductive invariant is a sufficient condition
for contract fulfillment; we provide a proof for this theorem in Appendix A.

Theorem 3.3. I ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ implies ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩.

3.2 Composing Contracts and Local Inductive Invariants
In this section, we present inference rules for composing state-based contracts. On their own,
these rules can be challenging to use for verifying large systems. Instead, these inference rules are
intended to lay the groundwork for composing action-based contracts in Sec. 4. In particular, we
will leverage the soundness theorems for these rules to prove the soundness of the action-based
composition rules. At the end of this subsection, we provide a discussion with the explicit reason
the rules are tough to use on their own.

The inference rules for composition in this paper are based on transitivity of invariance. This style
of contract composition resembles that of the popular and successful assume-guarantee verification
theory for finite-state systems, originally introduced by Cobleigh et al. [7]. We will exclusively
focus on transitive-style contract composition; however, in the future we plan to extend our theory
with additional types of composition, e.g., circular composition [1, 16, 33, 38] and conjunctive styles
of composition as seen in the Owicki-Gries method [42] and Concurrent Separation Logic (called
the disjoint concurrency rule) [39].
The idea behind our transitive composition method is to find an invariant R that serves as the

guarantee for one contract and the assumption of another, e.g., as seen in the rule naive-comp in
Fig. 5. The formula R is often referred to as an assumption, however we will refer to R as a bridge
formula (or simply a bridge), since we already reserve the term assumption for the assumption of a
contract. In addition to composing contracts, we also provide inference rules for composing the
associated local inductive invariants. The naive-comp rule, for example, composes two contracts
as well as their associated local inductive invariants I1 and I2. The composed invariants–that is,
the formula I1 ∧ I2–becomes a local inductive invariant for the composed contract.
Unfortunately, as the name suggests, naive-comp is a naive rule that cannot be used to prove

fulfillment for many valid contracts. The problem with naive-comp is that the components do not
share state variables, and therefore the formula R cannot refer to any state variables (by Def. 3.1).
In practice, this is a problem because local correctness arguments often rely on assumptions about
the correct behaviors of their state variables. For example, in Toy-2PC, naive-comp cannot be used
to show that the ToyRM components satisfies Consistent . The reason is because ToyRM only
guarantees Consistent if it can assume that the ToyTM component operates correctly; i.e. the
ToyTM must only choose to commit if all resource managers have prepared, and can never issue
both a commit and an abort message. Unfortunately, this assumption cannot be expressed in terms
of ToyRM ’s state variables.

To address the issue identified above, we propose a bridge component that acts as an intermediary
between the two components. The key idea–shown by rule bridge-comp in Fig. 5–is that the
components share the bridge component B , so it becomes possible to write a bridge assumption R
over the “shared” state variables inB . While the bridge component can be an existing component of
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naive-comp
I1 ⊢ ⟨⟨A⟩⟩C1⟨⟨R⟩⟩ I2 ⊢ ⟨⟨R⟩⟩C2⟨⟨G⟩⟩

I1 ∧ I2 ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩

bridge-comp
I1 ⊢ ⟨⟨A⟩⟩C1 ∥ B ⟨⟨R⟩⟩ I2 ⊢ ⟨⟨R⟩⟩B ∥ C2⟨⟨G⟩⟩

I1 ∧ I2 ⊢ ⟨⟨A⟩⟩C1 ∥ B ∥ C2⟨⟨G⟩⟩

aux-comp
I1 ⊢ ⟨⟨A⟩⟩C1 ∥ B ⟨⟨R⟩⟩ I2 ⊢ ⟨⟨R⟩⟩B ∥ C2⟨⟨G⟩⟩ Aux B

⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩

Fig. 5. Inference rules for composing contracts and inductive invariants in the state-based theory.

module ToyB
constant RMs
variables oncePrepare, onceCommit,

onceAbort

Init Δ
=

∧ oncePrepare = [rm ∈ RMs ↦→ false]
∧ onceCommit = [rm ∈ RMs ↦→ false]
∧ onceAbort = [rm ∈ RMs ↦→ false]

Prepare (rm) Δ
=

∧ oncePrepare′ =
[oncePrepare except ! [rm] = true]

∧ unchanged ⟨onceCommit, onceAbort⟩

Commit (rm) Δ
=

∧ onceCommit ′ =
[onceCommit except ! [rm] = true]

∧ unchanged ⟨oncePrepare, onceAbort⟩

Abort (rm) Δ
=

∧ onceAbort ′ =
[onceAbort except ! [rm] = true]

∧ unchanged ⟨oncePrepare, onceCommit⟩

Fig. 6. A bridge component for Toy-2PC.

the system, we propose creating bridge components exclusively with auxiliary variables. Auxiliary
variables were originally proposed by Owicki and Gries to make their inference system complete
[41]. Similarly, auxiliary variables make our theory more widely applicable, though not necessarily
complete. We lift the notion of auxiliary variables to auxiliary components in the definition below.

Definition 3.4. A component B is an auxiliary component if, for any contract ⟨⟨A⟩⟩C ⟨⟨G⟩⟩, we
have ⊢ ⟨⟨A⟩⟩C ∥ B ⟨⟨G⟩⟩ implies ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩. When B is an auxiliary component we write Aux B .

In the case that Aux B , we will refer to a pair (B ,R) that is used with the bridge-comp rule as
a bridge pair. Using an auxiliary bridge component with the bridge-comp rule is also sound, in
the sense that it proves ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩. This fact follows from the aux-comp inference rule in
Fig. 5. Notice that, in general, the inductive invariant I1 ∧ I2 in the conclusion of the bridge-comp
rule will contain auxiliary variables from the bridge component. Therefore, we include aux-comp
as a separate inference rule because I1 ∧ I2 may not be well-defined over C1 ∥ C2. Despite this
technicality, the formula I1∧I2 is nevertheless an inductive invariant that proves ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩
when using an auxiliary bridge component.

Toy-2PC example. Using our state-based theory, we will compositionally infer an inductive
invariant for the Toy-2PC example. We begin by creating a bridge component ToyB (Fig. 6) with
three auxiliary variables oncePrepare , onceCommit , and onceAbort . These variables respectively
represent whether a Prepare , Commit , or Abort action has happened at least once in the past. We
define the bridge formula ToyR (Fig. 7) over the auxiliary variables in ToyB . This bridge formula
formally encodes our earlier intuition that, in order to verify consistency, ToyRM must assume
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10 Ian Dardik and Eunsuk Kang

ToyR Δ
=

∧ (∃r ∈ RMs : onceCommit [r ]) ⇒ (∀r ∈ RMs : oncePrepare [r ])
∧ (∃r ∈ RMs : onceAbort [r ]) ⇒ (∀r ∈ RMs : ¬onceCommit [r ])

IRM
Δ
=

∧ Consistent
∧ ∀r ∈ RMs : onceCommit [r ] ⇐⇒ rmState [r ] = “commit”

∧ ∀r ∈ RMs : oncePrepare [r ] ⇒ rmState [r ] ≠ “working”

∧ ∀r ∈ RMs : (oncePrepare [r ] ∧ rmState [r ] = “abort”) ⇒ onceAbort [r ]

ITM
Δ
=

∧ ToyR
∧ ∀r ∈ RMs : r ∈ tmPrepared ⇒ oncePrepared [r ]
∧ ∀r ∈ RMs : onceCommit [r ] ⇒ tmState = “commit”

∧ ∀r ∈ RMs : onceAbort [r ] ⇒ tmState = “abort”

Fig. 7. A bridge formula and local inductive invariants for the components of Toy-2PC.

that the ToyTM will only choose to commit if all resource managers have prepared, and also that
ToyTM will never issue both a commit and an abort message.

Next, we create a local inductive invariant IRM (Fig. 7) for ToyRM ∥ ToyB , i.e. we have
IRM ⊢ ⟨⟨ToyR⟩⟩ToyRM ∥ ToyB ⟨⟨Consistent⟩⟩. Similarly, we create a local inductive invariant
ITM (Fig. 7) for ToyB ∥ ToyTM , i.e. ITM ⊢ ⟨⟨true⟩⟩ToyB ∥ ToyTM ⟨⟨ToyR⟩⟩. The rule aux-comp
allows us to conclude that the entire protocol (without assumptions) is safe, since Toy2PC =

ToyRM ∥ ToyTM . Furthermore, the inference rule bridge-comp allows us to infer that IRM ∧ITM
is an inductive invariant for ToyRM ∥ ToyB ∥ ToyTM . Because ToyB is an auxiliary component,
IRM ∧ ITM is an inductive invariant for the entire system.

Purpose of the state-based composition rules. The inference rules from Fig. 5 can be used to show
system-wide correctness, but require inventing a bridge component. Unfortunately, bridge compo-
nents can be complex–especially for large systems–which can ultimately cause these composition
rules to be difficult to use in practice. In Sec. 4, we will solve this problem by introducing simpler
composition rules in the action-based theory that do not require inventing a bridge component.
Therefore, the purpose of the composition inference rules from Fig. 5 is to build upon them in the
action-based theory.

4 Action-Based Assume-Guarantee Theory
In this section, we present the action-based theory that sits at the top of our two-layered assume-
guarantee theory. The action-based theory has inference rules for composition that are well suited
for verification, which we will use in our compositional framework in Sec. 5. In particular, the
inference rules for the action-based theory do not require inventing a bridge component. In the
state-based theory, bridge components were a necessary intermediary for bridge formulas, since
components do not share state variables. However, components share actions, which is the basis for
the simplicity of composition in the action-based theory. In the action-based theory, assumptions,
guarantees, and bridge formulas are encoded as action invariants, which are formulas with action-
based semantics. Bridge formulas are required to reference the actions from the shared alphabet of
components whose contracts are being composed, which makes an intermediary, such as a bridge
component, unnecessary.
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module oncePrepareT
constant RMs
variables x
Init Δ

= x = [rm ∈ RMs ↦→ false]
Prepare (rm) Δ

=

x ′ = [x except ! [rm] = true]

(a) Definition for oncePrepareT .

module onceCommitT
constant RMs
variables y
Init Δ

= y = [rm ∈ RMs ↦→ false]
Commit (rm) Δ

=

y ′ = [y except ! [rm] = true]

(b) Definition for onceCommitT .

module onceAbortT
constant RMs
variables z
Init Δ

= z = [rm ∈ RMs ↦→ false]
Abort (rm) Δ

=

z ′ = [z except ! [rm] = true]

(c) Definition for onceAbortT .

oncePrepare = (⟨RMs⟩, x , oncePrepareT )
onceCommit = (⟨RMs⟩, y, onceCommitT )

onceAbort = (⟨RMs⟩, z , onceAbortT )

(d) Fluent definitions for 𝜌1 and 𝜌2.

𝜎1 =
(
Prepare (r1)

)
𝜎2 =

(
Prepare (r1),Prepare (r2),Commit (r2)

)
(e) Example finite behaviors for the instance
RMs = {r1, r2}.

𝜌1 ≜ (∃r ∈ RMs : onceCommit (r )) =⇒ (∀r ∈ RMs : oncePrepare (r ))
𝜌2 ≜ (∃r ∈ RMs : onceAbort (r )) =⇒ (∀r ∈ RMs : ¬onceCommit (r ))

(f) Example SFL formulas.

Fig. 8. Definitions for specifying and verifying Toy-2PC compositionally using SFL.

The advantages of using action-based formalisms for composition are well-known, which is
the reason that assume-guarantee verification frameworks often use labeled transition systems
for assumptions, guarantees, and bridges [2, 5, 7, 18, 37]. However, using action invariants in our
contracts has the unique advantage that it allows our contracts to be translated to state-based
contracts, which can then be proved with the local inductive invariant method. Allowing our
contracts to be proved via local inductive invariants is a key advantage because it allows us to
compositionally verify parameterized systems, which the assume-guarantee theories for labeled
transition systems cannot, in general, be used for.
We will begin in Sec. 4.1 by introducing SFL, an action-based logic language that we will use

to define action invariants. In Sec. 4.2, we show how to translate action invariants to state-based
formalisms. In Sec. 4.3, we introduce our action-based assume-guarantee theory, in which we define
contracts, local inductive invariants for action-based contracts, and inference rules for composing
action-based contracts. Finally, in Sec. 4.4, we introduce a second type of action-based contract we
call a hybrid contract that allows the action-based theory to verify state-based properties.

4.1 Symbolic Fluent LTL
We now introduce a novel logic language called Symbolic Fluent Linear Temporal Logic (SFL). SFL
is based on Fluent Linear Temporal Logic (FLTL) [13], a logic language for specifying temporal
properties over actions. SFL provides two extensions to FLTL that make it particularly well suited for
specifying assumptions and guarantees for parameterized systems: symbolic fluents and quantifiers.
We will describe these extensions along with the syntax and semantics for the new logic language.
At the end of this subsection, we will use the SFL language to identify a class of formulas called
action invariants that we will use to define action-based contracts in Sec. 4.3.
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12 Ian Dardik and Eunsuk Kang

SFL syntax. Symbolic fluents are an extension of the non-symbolic fluents from FLTL. Non-
symbolic fluents are action-based propositions in FLTL that are syntactically analogous to the
state-based atomic propositions of Linear Temporal Logic (LTL) [46]. Semantically, however, fluents
represent booleans that may turn on or off depending on each action taken. The set of non-
symbolic fluents is fixed in each FLTL formula, which makes the language well-suited for specifying
properties of systems that have a fixed alphabet, e.g., labeled transition systems. In a parameterized
system, however, the alphabet generally depends on the parameters, which makes FLTL ill-suited
for specifying properties of such systems. This motivates symbolic fluents that accept arguments
and semantically correspond to boolean-valued functions. Note that we specifically use the term
argument for symbolic fluents to differentiate from the parameters of a protocol. For the remainder
of this paper, we will use the terms fluent and symbolic fluent synonymously. The formal definition
of a fluent is as follows.

Definition 4.1. A symbolic fluent is a triple (s, v ,T ), where s is a tuple of parameters that specify
the type of each argument to the fluent, v is a state variable, and T is a PSTS with the following
four requirements:
(1) T has exactly one state variable v .
(2) T is deterministic.
(3) The type of v must always be a boolean-valued function whose arguments have the types

given by s .
(4) Every action in Act T is enabled in every state of T .

We also define the following notation for the alphabet of a symbolic fluent: Act (s, v ,T ) = Act T .
Returning to the Toy-2PC example, consider the fluent oncePrepare in Fig. 8d. The fluent accepts

one argument with type RMs and refers to a state variable x whose value changes according
to the transition system oncePrepareT from Fig. 8a. Intuitively, the fluent represents whether a
Prepare (rm) action has occurred at least once in the past, which can be seen from the definition
of oncePrepareT . We will use the syntax oncePrepare (rm) to access the value of the fluent at
a given time step, where rm is an argument to the fluent. For example, after execution of the
finite behavior 𝜎1 from Fig. 8e, oncePrepare (r1) will evaluate to true, while oncePrepare (r2) will
evaluate to false. Because fluents in SFL accept arguments, we can introduce quantifiers into the
language for the purpose of passing quantified variables as arguments to fluents. Based on these
extensions, we now define the syntax for SFL formulas.

Definition 4.2. A Symbolic Fluent Linear Temporal Logic (SFL) formula has the syntax in Fig. 9,
must be absent of free variables (arguments to fluents), and fluents may not share state variables.
For an SFL formula 𝜙 , fl (𝜙) refers to the set of all symbolic fluents in 𝜙 and Params (𝜙) refers to
the set of all parameters (each D from Fig. 9) that are quantified over in 𝜙 . In this paper, we will
use Greek letters, namely 𝜙,𝜓, 𝛼, 𝜌, and 𝛾 , to represent SFL formulas.

Remark 1. We include standard logical connectives (e.g., ∧ and =⇒) and temporal logic operators

(e.g., 2 and ♢) in SFL, defined with the usual syntactic sugar. For example, the “always” operator can

be defined in SFL as 2𝜙 = ¬(true U¬𝜙).
For example, consider the SFL formula 2𝜌1, where 𝜌1 is defined in Fig. 8f. This formula is an

invariant that quantifies over RMs and has two symbolic fluents, oncePrepare and onceCommit ,
that are defined in Fig. 8d. The onceCommit fluent is defined similarly to the oncePrepare fluent
described above, the main difference being that onceCommit represents whether a Commit (rm)
action has occurred at least once (see the definition for onceCommitT in Fig. 8b). Intuitively, the
formula 𝜌1 specifies that at all times, if any resource manager commits, then it must be the case
that all resource managers have previously prepared.
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SFL ::= SFL U SFL | X SFL | ∃x ∈ D : SFL | ¬SFL | SFL ∨ SFL | f (ARG)
ARG ::= x | x ,ARG

Fig. 9. BNF grammar for the SFL Syntax. U and X are temporal operators, while ∃, ¬, and ∨ are first-order
logic connectives. f (ARG) indicates a symbolic fluent f with one or more parameters. In ARG , x represents
a quantified variable passed as an argument to a symbolic fluent.

E ⊢ 𝜎, i |= 𝜙U𝜓 iff ∃j ∈ N : (j ≥ i ) ∧ (E ⊢ 𝜎, j |= 𝜓 ) ∧
(∀k ∈ N : i ≤ k < j =⇒ E ⊢ 𝜎, k |= 𝜙)

E ⊢ 𝜎, i |= X𝜙 iff E ⊢ 𝜎, i + 1 |= 𝜙

E ⊢ 𝜎, i |= ∃x ∈ D : 𝜙 iff ∃y ∈ D : E [x ↦→ y] ⊢ 𝜎, i |= 𝜙

E ⊢ 𝜎, i |= ¬𝜙 iff ¬(E ⊢ 𝜎, i |= 𝜙)
E ⊢ 𝜎, i |= 𝜙 ∨𝜓 iff (E ⊢ 𝜎, i |= 𝜙) ∨ (E ⊢ 𝜎, i |= 𝜓 )
E ⊢ 𝜎, i |= f (r ) iff (f |𝜎0 . . . 𝜎i ) [r [E ]]

Fig. 10. SFL semantics.

SFL semantics. We now turn our attention to defining the formal semantics of SFL. We use a
ternary operator of the form E ⊢ 𝜎, i |= 𝜙 to express that a (possibly infinite) action-based behavior
𝜎 satisfies the SFL formula 𝜙 at index i with environment E . An environment is an assignment
of variables to values, and we use the notation r [E ] to mean the result of replacing all variables
in r with their corresponding value in E . Additionally, we use the short hand 𝜎 |= 𝜙 to mean
[] ⊢ 𝜎, 0 |= 𝜙 , where [] is the empty environment. We also define the language of an SFL formula 𝜙
as the set of all its satisfying behaviors: L(𝜙) = {𝜎 | 𝜎 |= 𝜙}.
We present the formal semantics for SFL in Fig. 10. The semantics for SFL are standard, with

the exception of symbolic fluent expressions which we now describe. Intuitively, the meaning of a
symbolic fluent (s, v ,T ) is the boolean-valued function v after the execution of a finite behavior 𝜎
of actions in the transition system T . We now provide a notation for accessing the value of a fluent
at a given time step.

Definition 4.3. Given a fluent f = (s, v ,T ) and a finite action-based behavior 𝜎 = 𝜎0𝜎1 . . . 𝜎i ,
we let f |𝜎 denote the boolean-valued function v that is the result of executing 𝜎 in the transition
system T . Note that any action in 𝜎 that is not in Act T leaves the state variable v unchanged. We
remark that this notation is well-defined because 𝜎 is finite, T is deterministic, and all actions in
T are always enabled.

Fig. 10 uses the notation from Def. 4.3 to define the semantics of a symbolic fluent expression
f (r ), where f is a fluent and r are the arguments passed to the fluent. In (f |𝜎0 . . . 𝜎i ) [r [E ]] from
the definition in Fig. 10, the arguments r contain quantified variables, and therefore r [E ] are
concrete arguments. Essentially, the semantics of a fluent is the (boolean) value of the function
(f |𝜎0 . . . 𝜎i ) given the concrete arguments r [E ].
For example, consider oncePrepare from Fig. 8d as well as the finite behaviors from Fig. 8e. In

this case, oncePrepare |𝜎1 = [r1 ↦→ true, r2 ↦→ false] and onceCommit |𝜎2 = [r1 ↦→ false, r2 ↦→
true]. Alternatively, we can also write (oncePrepare |𝜎1) [r1] = true, (oncePrepare |𝜎1) [r2] =

false, etc. We also point out that we have both 𝜎2 |= 2𝜌1 and 𝜎2 |= 2𝜌2.
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R(𝜙U𝜓 ) = R(𝜙)UR(𝜓 ) R(X𝜙) = XR(𝜙) R(∃x ∈ D : 𝜙) = ∃x ∈ D : R(𝜙)
R(¬𝜙) = ¬R(𝜙) R(𝜙 ∨𝜓 ) = R(𝜙) ∨ R(𝜓 ) R

(
(s, v ,T ) (r )

)
= v [r ]

Fig. 11. Definition of R, a syntactic transformation of an SFL formula to a state-based one.

Action invariants. In the remainder of this paper, we will focus on a class of SFL formulas called
action invariants. An action invariant is a formula of the form 2𝜙 , where 𝜙 is a non-temporal
SFL formula. For example, 2𝜌1 and 2𝜌2 are both action invariants. In Sec. 4.2, we will show that
action invariants can be translated to state-based formalisms. Subsequently, in Sec. 4.3, we will
use action invariants for the assumptions and guarantees of the contracts in our action-based
assume-guarantee theory.

4.2 Translating Action Invariants to State-Based Formalisms
In this section, we show that action invariants have two state-based counterparts: bridge pairs and
transition systems (PSTSs). When we introduce our action-based assume-guarantee theory in the
following section (Sec. 4.3), the translation from action invariants to bridge pairs will allow us to
translate action-based contracts to state-based contracts. On the other hand, the translation from
action invariants to transition systems lets us treat action invariants as algebraic processes, which
will help us to define action-based contracts.

Translation to bridge pairs. We now show that action invariants correspond to bridge pairs,
which are state-based formalisms that we introduced in Sec. 3.2. The translations are given by two
mappings B (bridge components) and R (bridge formulas), which we now define.

Definition 4.4. Let 𝜙 be an SFL formula, then B(𝜙) = ∥{T | (s, v ,T ) ∈ fl (𝜙)}, where fl (𝜙) is
the set of all fluents in the formula 𝜙 and the ∥ operator here indicates the parallel composition of
all transition systems in the given set. We provide the formal definition for R in Fig. 11.

In essence, B is the parallel composition of all fluents in an SFL formula, while R is a syntactic
transformation that replaces each fluent with its underlying state variable. These maps can be seen
as a decoupling of an SFL formula into two parts, where B represents the dynamics of the fluents
and R represents the invariant itself.
In the Toy-2PC example, we can translate the action invariant 2(𝜌1 ∧ 𝜌2) (Fig. 8f) to the cor-

responding state-based formalisms. Up to a variable renaming, we have B(2(𝜌1 ∧ 𝜌2)) = ToyB
(Fig. 6) and R(2(𝜌1 ∧ 𝜌2)) = 2ToyR (Fig. 7). In this example, B maps an action invariant to an
auxiliary component. The following theorem shows that B will, in general, map action invariants
to auxiliary components. This result formally demonstrates that action invariants correspond to
bridge pairs; we provide a proof in Appendix C.

Theorem 4.5. Let 2𝜙 be an action invariant, then B(2𝜙) is an auxiliary component.

Translation to a transition system. We now show that action invariants correspond to transition
systems. We provide this connection formally with the mapping T , which we define in terms of
the previously introduced maps B and R.

Definition 4.6. Let 2𝜙 be an action invariant and also let B(2𝜙) = (vars, Init,Next)p . Then,
T (2𝜙) = (vars, Init ∧ R(𝜙),Next ∧ R(𝜙)′)p .

Intuitively, T (2𝜙) is a transition system version of the action invariant 2𝜙 . We will show
formally that these two are semantically equivalent (Thm. 4.7) after a brief example. Returning to
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the Toy-2PC example, T (2(𝜌1 ∧ 𝜌2)) is a transition system that represents ToyB restricted to the
behaviors of 2ToyR. This intuition helps to see that T (2(𝜌1 ∧ 𝜌2)) ∥ ToyRM |= 2Consistent
and also that L(ToyTM ) ⊆ L(T (2(𝜌1 ∧ 𝜌2))). In this example, T (2(𝜌1 ∧ 𝜌2)) appears to take
the place of a bridge formula, acting as an assumption for ToyRM to satisfy Consistent and as a
guarantee for ToyTM . Indeed, we will make this intuition precise in the following section (Sec. 4.3)
by defining action-based contracts in terms of T .
We now present the following theorem that shows that action invariants are semantically

equivalent to their transition system counterpart given by T . We provide a proof for this theorem
in Appendix D.

Theorem 4.7. For any action invariant 2𝜙 , we have L(2𝜙) = L(T (2𝜙)).

4.3 Assume-Guarantee Theory with Action-Based Contracts
We now present our action-based assume-guarantee theory. We begin by defining contracts and
the local inductive invariant proof method in this theory. Subsequently, we provide inference rules
for composing contracts and their associated invariants.

Action-based contracts and local inductive invariants. We will use the notation ⟨𝛼⟩C ⟨𝛾⟩ for
contracts in our action-based theory, where 𝛾 is the guarantee that C must satisfy under the
assumption𝛼 . Themeaning of a contract is that the language of the componentC , when restricted to
the assumption 𝛼 , must be contained in the language of the guarantee𝛾 . In typical assume-guarantee
verification paradigms, restricting the component to the assumption is achieved algebraically, i.e.
by taking the parallel composition of the assumption and the component. Similarly, we will restrict
the component to the assumption by taking the parallel composition of C and T (2𝛼), the latter
being semantically equivalent to the assumption by Thm. 4.7. We now define action-based contracts
from this intuition.

Definition 4.8. Let C = (vars, Init,Next)p be a PSTS. Also let 𝛼 and 𝛾 be non-temporal SFL
formulas such that Params (𝛼) ∪ Params (𝛾) ⊆ p and Act 𝛼 ∪ Act 𝛾 ⊆ Act C . Then a contract
⟨𝛼⟩C ⟨𝛾⟩ is fulfilled if and only if L(T (2𝛼) ∥ C ) ⊆ L(2𝛾). We will denote contract fulfillment
with the notation ⊢ ⟨𝛼⟩C ⟨𝛾⟩.

For example, ⟨true⟩ToyTM ⟨𝜌1 ∧ 𝜌2⟩ is an action-based contract. Proving that the contract is
fulfilled, however, requires the local inductive invariant method. We can use the local inductive
invariant method by translating the contract to a state-based contract, which we accomplish by
translating the assumption and guarantee using the maps B and R from the prior section (Sec. 4.2).
For an action-based contract ⟨𝛼⟩C ⟨𝛾⟩, the corresponding state-based contract is ⟨⟨R(𝛼)⟩⟩B(2𝛼) ∥
C ∥ B(2𝛾)⟨⟨R(𝛾)⟩⟩. We will formally show that this choice of translation is appropriate belowwhen
we prove Thm. 4.10. Based on this translation, we provide the following definition for showing
that a contract is fulfilled by a local inductive invariant.

Definition 4.9. Let 𝛼 and 𝛾 be non-temporal SFL formulas. We define I ⊢ ⟨𝛼⟩C ⟨𝛾⟩ to be fulfilled if
and only if I ⊢ ⟨⟨R(𝛼)⟩⟩B(2𝛼) ∥ C ∥ B(2𝛾)⟨⟨R(𝛾)⟩⟩. Note that, for any non-temporal SFL formula
𝜙 , B(2𝜙) = B(𝜙), and hence we will usually write B(𝜙) below instead of B(2𝜙) for brevity.

The contract from the example above can be proved using the invariant ITM from Fig. 7. In other
words, we have ITM ⊢ ⟨true⟩ToyTM ⟨𝜌1 ∧ 𝜌2⟩. The following theorem that shows that the local
inductive invariant method is sufficient for showing that action-based contracts are fulfilled; we
provide proof in Appendix E.

Theorem 4.10. I ⊢ ⟨𝛼⟩C ⟨𝛾⟩ implies ⊢ ⟨𝛼⟩C ⟨𝛾⟩
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sfl-comp
I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ I2 ⊢ ⟨𝜌⟩C2⟨𝛾⟩
I1 ∧ I2 ⊢ ⟨𝛼⟩C1 ∥ B(𝜌) ∥ C2⟨𝛾⟩

sfl-safe
I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ I2 ⊢ ⟨𝜌⟩C2⟨𝛾⟩

⊢ ⟨𝛼⟩C1 ∥ C2⟨𝛾⟩

Fig. 12. Assume-guarantee inference rules for transitive composition with an SFL bridge formula 𝜌 .

Composing contracts and local inductive invariants. We now present inference rules for composing
action-based contracts based on transitivity of action invariance. The idea is that composition
depends on finding an action invariant 𝜌–a bridge formula–that acts as the assumption for one
contract and the guarantee for the other.

Based on this intuition, we present the inference rule sfl-comp in Fig. 12 that composes contracts
and their associated local inductive invariants. Notice that, in the conclusion of sfl-comp, we
include B(𝜌) to ensure that I1∧ I2 is well-defined, given that I1 and I2 may reference the (auxiliary)
variables in B(𝜌). We also point out that, by Def. 3.1, the alphabet of a bridge formula must be
contained in the shared alphabet of the two components whose contracts are being composed.
Because the actions of a bridge formula are shared between the two components, the action-based
inference rules avoid an intermediary such as a bridge component. Furthermore, the inference rule
sfl-safe in Fig. 12 shows that sfl-comp is sound, in the sense that it proves the composition of the
components to be safe. We prove that the rules sfl-comp and sfl-safe are sound in Appendix F.

4.4 Hybrid Assume-Guarantee Contracts
In the prior section (Sec. 4.3), we introduced an action-based assume-guarantee theory. However,
this theory is not sufficient for verifying that specifications satisfy state-based properties. For
example, using action-based contracts alone, one cannot show that the Toy-2PC protocol satisfies
the state invariant 2Consistent because action-based guarantees are action invariants.
Consequently, in this section, we introduce hybrid contracts, in which the assumption is an

action invariant and the guarantee is a state invariant. We will define contracts and the local
inductive invariant proof method in this theory, after which we will provide inference rules for
composition. We will show that, with the addition of hybrid contracts, our action-based theory can
verify state-based properties of systems.

Hybrid contracts and local inductive invariants. We will use the notation ⟨𝛼⟩C ⟨G⟩ for hybrid
contracts, whereG is a state-based guarantee thatC must satisfy under the action-based assumption
𝛼 . We use the same notation for action-based and hybrid contracts for uniformity, since we will use
both types of contracts for verifying a single system. The meaning of a hybrid contract is that the
component C , when restricted to the assumption 𝛼 , must always satisfy the guarantee G . Similarly
to Sec. 4.3, we will restrict the component to the assumption algebraically, by taking the parallel
composition of C and T (2𝛼). However, we require the guarantee to hold in a state-based fashion.
We now define hybrid contracts from this intuition.

Definition 4.11. Let C = (vars, Init,Next)p be a PSTS. Also, let 𝛼 be a non-temporal SFL
formula and G be a non-temporal FOL formula such that such that Params (𝛼) ∪Params (G) ⊆ p,
Act 𝛼 ⊆ Act C , and SV (G) ⊆ vars . A hybrid contract ⟨𝛼⟩C ⟨G⟩ is fulfilled if and only if
T (2𝛼) ∥ C |= 2G . We will denote contract fulfillment with the notation ⊢ ⟨𝛼⟩C ⟨G⟩.

For example, ⟨𝜌1∧𝜌2⟩ToyRM ⟨Consistent⟩ is a hybrid contract. Proving fulfillment requires the
inductive invariant method; much like in the action-based theory, we translate the hybrid contract
to a state-based contract in order to use the local inductive invariant method from Sec. 3.1. For
a hybrid contract ⟨𝛼⟩C ⟨G⟩, the corresponding state-based contract is ⟨⟨R(𝛼)⟩⟩B(2𝛼) ∥ C ⟨⟨G⟩⟩.
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hybrid-comp
I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ I2 ⊢ ⟨𝜌⟩C2⟨G⟩
I1 ∧ I2 ⊢ ⟨𝛼⟩C1 ∥ B(𝜌) ∥ C2⟨G⟩

hybrid-safe
I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ I2 ⊢ ⟨𝜌⟩C2⟨G⟩

⊢ ⟨𝛼⟩C1 ∥ C2⟨G⟩

Fig. 13. Assume-guarantee inference rules for transitive composition with an SFL bridge formula 𝜌 .

This translation is similar to the action-based contract translation, except the state-based formula
G does not need to be translated. Based on this translation, we provide the following definition for
showing that a contract is fulfilled by a local inductive invariant.

Definition 4.12. Let 𝛼 be a non-temporal SFL formula and let G be a non-temporal FOL formula.
We define I ⊢ ⟨𝛼⟩C ⟨G⟩ to be fulfilled if and only if I ⊢ ⟨⟨R(𝛼)⟩⟩B(2𝛼) ∥ C ⟨⟨G⟩⟩. Similarly to
Sec. 4.3, we will prefer to write B(𝜙) instead of B(2𝜙) since the two are equivalent.

The contract from above can be proved using the invariant IRM from Fig. 7. In other words,
we have IRM ⊢ ⟨𝜌1 ∧ 𝜌2⟩ToyRM ⟨Consistent⟩. The following theorem that shows that the local
inductive invariant method is sufficient to show that a hybrid contract is fulfilled; we provide proof
in Appendix G.

Theorem 4.13. I ⊢ ⟨𝛼⟩C ⟨G⟩ implies ⊢ ⟨𝛼⟩C ⟨G⟩

Composing contracts and local inductive invariants. Hybrid contracts are intended to be composed
with action-based contracts. Therefore, we present the inference rule hybrid-comp in Fig. 13 that
composes an action-based contract with a hybrid contract, as well as their associated local inductive
invariants. Similarly to Sec. 4.3, we include B(𝜌) in the conclusion of the rule hybrid-comp to
ensure that the local invariant is well-defined. The inference rule hybrid-safe in Fig. 13 additionally
shows that hybrid-comp is sound, in the sense that it proves the composition of the components
to be safe. We prove that the two inference rules hybrid-comp and hybrid-safe are sound in
Appendix H.

We now return to the Toy-2PC example. Recall from above IRM ⊢ ⟨𝜌1∧𝜌2⟩ToyRM ⟨Consistent⟩,
and also from Sec. 4.3 that ITM ⊢ ⟨true⟩ToyTM ⟨𝜌1∧𝜌2⟩. By the hybrid-safe rule, we can conclude
that ⊢ ⟨true⟩ToyTM ∥ ToyRM ⟨Consistent⟩, i.e. that the entire system is safe. Furthermore, the
hybrid-comp rule shows that ITM ∧ IRM is an inductive invariant for the entire system.

5 Compositional Inductive Invariant Inference
Using the two-layered assume-guarantee theory from the prior two sections, we now present a
framework for compositional inductive invariant inference. The problem statement is as follows:
given a system S and an invariant 2P , find an inductive invariant that proves S |= 2P . Our
compositional inference framework solves this problem with the following four steps: (1) system
decomposition, (2) bridge formula inference, (3) local inductive invariant inference, and (4) global
safety. The visual in Fig. 1 shows the four steps at a high level; here, we provide details for each
step, including examples using Toy-2PC.

(1) System decomposition. In this step, we decompose S into components C1, . . . ,Cn such that
S = C1 ∥ · · · ∥ Cn . For example, in Toy-2PC, we decomposeToy2PC into two components (n = 2),
ToyRM and ToyTM from Fig. 4.

(2) Bridge formula inference. The goal of this step is to find formulas 𝜙1, . . . , 𝜙n+1 to create candi-
date contracts ⟨𝜙i ⟩Ci ⟨𝜙i+1⟩. The formulas𝜙1, . . . , 𝜙n are action invariants with the requirement that
𝜙1 = true. The final formula 𝜙n+1 is required to be the state-based safety property, i.e. 𝜙n+1 = P .
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Consequently, the first n − 1 contracts are action-based, while the final contract is hybrid. In the
Toy-2PC example, 𝜙1 = true, 𝜙2 = 𝜌1 ∧ 𝜌2, and 𝜙3 = Consistent , making the candidate contracts
⟨true⟩TM ⟨𝜌1 ∧ 𝜌2⟩ and ⟨𝜌1 ∧ 𝜌2⟩RM ⟨Consistent⟩.

(3) Local inductive invariant inference. For each candidate contract ⟨𝜙i ⟩Ci ⟨𝜙i+1⟩, the goal is to
infer a local inductive invariant Ii such that Ii ⊢ ⟨𝜙i ⟩Ci ⟨𝜙i+1⟩. ByDef. 4.9, the first n−1 contracts can
be translated to the state-based contract Ii ⊢ ⟨⟨R(𝜙i )⟩⟩B(𝜙i ) ∥ Ci ∥ B(𝜙i+1)⟨⟨R(𝜙i+1)⟩⟩. By Def. 4.12,
we can also translate the final contract to the hybrid contract Ii ⊢ ⟨⟨R(𝜙i )⟩⟩B(𝜙i ) ∥ Ci ⟨⟨𝜙i+1⟩⟩.
In both cases, we obtain a state-based contract that entails a local inductive invariant inference
problem for finding Ii .
We describe how to solve the local inductive invariant inference problem for the first n − 1

contracts; the solution for the final hybrid contract is similar. Suppose that B(𝜙i ) ∥ Ci ∥ B(𝜙i+1) =
(vars, Init,Next)p , then we construct Di = (vars, Init ∧R(𝜙i ),Next ∧R(𝜙i )′)p . By Def. 3.1, any
inductive invariant that proves Di |= 2R(𝜙i+1) also serves as a local inductive invariant Ii for the
corresponding contract. However, verifying Di |= 2R(𝜙i+1) reduces to a global inductive invariant
inference problem, which can be solved using off-the-shelf tools.

For Toy-2PC, the state-based proof obligations are to find I1 and I2 such that I1 ⊢ ⟨⟨true⟩⟩ToyTM ∥
ToyB ⟨⟨ToyR⟩⟩ and I2 ⊢ ⟨⟨ToyR⟩⟩ToyB ∥ ToyRM ⟨⟨Consistent⟩⟩. The proof obligation for the first
contract reduces to finding an inductive invariant I1 for ToyTM ∥ ToyB |= 2ToyR, while
the proof obligation for the second contract reduces to finding an inductive invariant I2 for
T (2(𝜌1 ∧ 𝜌2)) ∥ ToyRM |= 2Consistent . In this case, I1 = ITM and I2 = IRM are sufficient
choices.
We also point out that local inductive invariant inference can be parallelized because each

contract constitutes an independent proof obligation. We will utilize this fact during our evaluation
in Sec. 6.

(4) Global safety. Let I be the conjunction of each local inductive invariant, i.e. I = I1 ∧ · · · ∧ In .
Also, letB be the parallel composition of all bridge components, i.e.B = B(𝜙1) ∥ · · · ∥ B(𝜙n ). Then,
by the rules sfl-comp and hybrid-comp, we can infer that I ⊢ ⟨true⟩S ∥ B ⟨P⟩. Furthermore,
by the rules sfl-safe and hybrid-safe, we can infer that ⊢ ⟨true⟩S ⟨P⟩. In other words, the
entire system is safe and I is an inductive invariant for the entirety of S . In the Toy-2PC example,
ITM ∧ IRM is an inductive invariant I for the entire protocol.

6 Evaluation
We evaluate our inductive invariant inference method by applying it to two case studies of dis-
tributed protocols, both of which are specified in TLA+. We compare the compositional approach to
the global approach using Endive [47] as a baseline. Endive is a state-of-the-art tool for automatic
inductive invariant inference for TLA+ specifications. In addition, we use Endive as our off-the-shelf
tool for local inductive invariant inference, as described in our compositional framework (Sec. 5).
The first case study is the full version of the Two Phase Commit protocol [17], in which we

compare automatic inductive invariant inference using both the global and compositional methods.
The second case study is an industrial-scale protocol of a Raft [40] style algorithm that runs
at MongoDB [36]. To the best of our knowledge, this case study is beyond the reach of any
existing algorithm for automatic inductive invariant inference, including Endive. However, with
the compositional approach, we infer an inductive invariant for the protocol semi-automatically.
Between the two case studies, we provide evidence that, in comparison to the global approach, the
compositional approach can be more efficient for inductive invariant inference and results in more
concise proofs. Additionally, we show that the artifacts from compositional inference, including
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𝜌r ≜ ∧ (∃rm ∈ RMs : onceRcvCommit (rm)) =⇒ (∀rm ∈ RMs : onceSndPrepare (rm))
∧ (∃rm ∈ RMs : onceRcvAbort (rm)) =⇒ (∀rm ∈ RMs : ¬onceRcvCommit (rm))

𝜌e ≜ ∧ (∃rm ∈ RMs : onceSndCommit (rm)) =⇒ (∀rm ∈ RMs : onceRcvPrepare (rm))
∧ (∃rm ∈ RMs : onceSndAbort (rm)) =⇒ (∀rm ∈ RMs : ¬onceSndCommit (rm))

Fig. 14. Definitions for the bridge formulas in the 2PC protocol.

Jg ≜ ∀rm ∈ RM : (tmState = “init” ∧ [type ↦→ “Prepared”, theRM ↦→ rm] ∈ msgs) =⇒
(rmState [rm] = “prepared”)

Jl ≜ ∀rm ∈ RMs : onceSndPrepare [rm] =⇒ rmState [rm] ≠ “working”

Fig. 15. Jg is a conjunct of the global inductive invariant for 2PC while Jl is a conjunct of a local inductive
invariant for 2PC. Both formulas specify that resource managers cannot abort after sending a prepare message.

bridge formulas and local inductive invariants, provide insights into the behavior of the protocols
beyond those of the global approach.

We manually decomposed all specifications in our case studies; automatic specification decompo-
sition is well-studied [6, 9, 34, 37] and beyond the scope of this paper. We also manually created all
bridge formulas in the case studies. Bridge formula inference is a nontrivial task whose automation
is a significant research problem on its own and is beyond the scope of this paper. We also include
a machine checked proof for each inductive invariant written in the TLA+ Proof System (TLAPS)
[8] proof language. All experiments and proofs were run on MacOS version 14.7.6 with an M1 Pro
chip, and are available in our supplementary materials.

6.1 Case Study 1: Two Phase Commit
In this case study, we verify the (full) Two Phase Commit (2PC) protocol [17]. We compare automatic
inductive invariant inference between our compositional framework and the global approach.

Protocol description. The 2PC protocol allows messages to be delayed, dropped, and reordered,
while Toy-2PC assumes a perfect network. Rather than singlePrepared ,Commit andAbort actions,
this protocol models sending and receiving each message over a network. Therefore, 2PC includes
the actions SndPrepared and RcvPrepared , etc. The protocol also includes an additional state
variable msgs that records all messages that have been sent across the network; message delay,
dropping, and reordering are modeled as a receiver ignoring a message for some period of time
(e.g., indefinitely for a dropped message).

Inductive invariant inference. For global inference, we use the inductive invariant and the proof
reported in the Endive paper [47]. For compositional inference, we use the framework presented in
Sec. 5. We outline the four steps of the framework below.

Step (1) system decomposition. We decompose the system into three components RM , Env , and
TM . The components respectively represent the resource managers, the environment, and the
transaction manager.

Step (2) bridge formula inference. The candidate contracts are ⟨true⟩TM ⟨𝜌e⟩, ⟨𝜌e⟩Env ⟨𝜌r ⟩, and
⟨𝜌r ⟩RM ⟨Consistent⟩, where the bridge formulas 𝜌r and 𝜌e are shown in Fig. 14. The fluents in
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Table 1. Comparison between global and compositional inductive invariant inference for 2PC. All times from
Endive are reported in seconds.

Specification Endive Time Proof Size Inv. Size
TwoPhase (global) 34.82 107 10
RM 15.44 8 5
Env 30.43 86 8
TM 6.13 8 5

𝜌r and 𝜌e follow the once pattern, e.g., from Fig. 8d; we therefore omit the explicit definition of the
fluents for brevity. Intuitively, 𝜌r specifies the acceptable behavior of the network, while 𝜌e specifies
the acceptable behavior of the transaction manager. The network requirement 𝜌r is conceptually
the same as 𝜌1∧𝜌2 (Fig. 8f) from the Toy-2PC protocol, except 𝜌r describes the requirement in terms
of messages that the resource managers can receive from the network. Likewise, the transaction
manager requirement 𝜌e is conceptually the same as 𝜌1 ∧ 𝜌2, except 𝜌e describes messages that
the transaction manager may send over the network.

Step (3) local inductive invariant inference. We first translate each of the three contracts to their
state-based counterpart. After, we use Endive to infer a local inductive invariant. We include a
TLAPS proof for each inductive invariant that Endive returned.

Step (4) global safety. By proof rules sfl-comp and hybrid-comp, the conjunction of the three
local inductive invariants is an inductive invariant for the entire 2PC protocol. Furthermore, we
infer that the protocol is safe by rules sfl-safe and hybrid-safe.

Results. We summarize our results in Table. 1. For each specification, we include the run-time for
Endive in seconds (Endive Time), the size of the corresponding proof (Proof Size), and the number
of conjuncts in the inductive invariant (Inv. Size) as a rough measure for its size. When reporting
the size of the proof, we count only the number of proof steps to avoid counting irrelevant lines
that result due to formatting.

Discussion. Efficiency of invariant inference. In terms of run-time for automatic inductive
invariant inference, the global approach is the least efficient at 34.82 seconds. By parallelizing local
inductive invariant inference, as recommended in Sec. 5, compositional inference is performed
more efficiently (30.43 seconds) than the global approach. This comparison provides evidence that
compositional inference can be more efficient than the global approach.
Proof conciseness. Table. 1 shows that the proof sizes for the local inductive invariants, both

individually and combined, are smaller than the proof for the global invariant. These results provide
evidence that the proofs for local inductive invariants may be more concise than the proofs for
global invariants. We also point out that the number of conjuncts in each local inductive invariant
is smaller than the number in the global invariant; however, we consider the number of conjuncts
to be a rough, secondary measure for evaluating the conciseness of the proof for an inductive
invariant.

Insights from compositional inference. In addition to their value for verification, inductive
invariants are also valuable for the insights they provide about a system. The artifacts from
compositional inference–bridge formulas and local inductive invariants–also provide insights about
systems, some of which are not found in global inductive invariants. For example, the two conjuncts
of both bridge formulas 𝜌r and 𝜌e offer a concise modular specification of the two phases of the
2PC protocol: the first conjuncts specify that all resource managers attempt to prepare in the first
phase before a commit, while the second conjuncts specify that the transaction manager chooses
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to either commit or abort in the second phase. However, no single part of the global inductive
invariant offers this concise insight.

Local invariants offer concise local insights. Furthermore, we observe that local insights tend
to be encoded more concisely in local invariants in comparison with global invariants. For example,
a key requirement for the 2PC protocol is that once each resource manager sends a prepare message,
it can no longer silently abort. The global inductive invariant and the local inductive invariant for
RM both encode this requirement differently; we show the relevant conjunct from each invariant
in Fig. 15. Notice that the global invariant refers to the state variables from all three components
of the system (RM , Env , and TM ), while the local invariant refers only to the state variables
and actions for the relevant component (RM ). By referring to only the relevant component, the
local inductive invariant reduces the scope of the protocol that is needed to understand the key
requirement.

6.2 Case Study 2: Mongo Static Raft
In this case study, we verify Mongo Static Raft (MSR) [48], an industrial-scale protocol based on
Raft [40] that runs at MongoDB [36]. We describe and compare our effort to infer an inductive
invariant for MSR using both the global and compositional approaches.

Protocol description. MSR is a distributed consensus protocol that uses leader elections to maintain
a consistent replicated state machine. The protocol begins with an election, where a server within
a cluster is decided to be the primary. Each server updates its metadata with the primary server
and the term–a natural number that increases with each election–for which the primary will serve.
The primary server accepts client requests and tracks them in a local data structure called a log.
The servers in the cluster replicate the contents of their log in gossip style to the other nodes in the
cluster. Once a majority of servers add a client request to their log, the request is considered to be
committed and each server adds it to their state machine.
The safety property for the protocol is state machine safety (SMS), which we show formally

in Fig. 16d. This property specifies that, for any two commits c1 and c2, if they share the same
index (c1.ind = c2.ind ), then the two commits must be identical (c1 = c2). In general, a commit
c records the index in the log (c .ind ) and the term in which the client request occurred (c .term).
The MSR specification uses the term (c .term) as an abstract representation for the contents of a
client request.

In the MSR protocol, the network can drop or reorder messages and can also cause the servers to
be partitioned. However, servers are expected to act in a failstop manner, meaning that failed servers
do not produce faulty or corrupt messages. When a leader fails or if the network is partitioned, the
protocol will elect a new primary in a new term. All servers have the ability to “catch up” other
servers in a lower term by rolling back extraneous log entries and adding correct ones. Additionally,
the protocol derives its name from the assumption that its configuration–the set of nodes in the
cluster–is static.
In the TLA+ encoding of the protocol [48], the set of servers is given as a parameter. The

specification includes the following state variables: committed , log , state , and currentTerm , which
represent the set of commits, the log, whether each server is a primary, and the current election
term. The variable committed keeps track of the set of all commits throughout the protocol, while
the remaining three variables represent data structures that are local to each server.

Inductive invariant inference. We attempted to use Endive to automatically infer a global inductive
invariant for MSR. However, Endive exits with failure for global inference because it could not
find predicates to eliminate all counter examples to induction (CTIs). Therefore, we manually
constructed a global inductive invariant for MSR, which we proved with TLAPS.
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module commitAtTermIndT
Init Δ

= v1 = [x0 ∈ N ↦→ [x1 ∈ N ↦→ false]]
CommitEntry (s, ind , term) Δ

=

v1′ = [v1 except ! [term] [ind ] = true]

(a) Fluent definition for commitAtTermInd.

module leaderAtTermServT
Init Δ

= v2 = [x0 ∈ N ↦→ [x1 ∈ Server ↦→ false]]
BecomeLeader (s, term) Δ

=

v2′ = [v2 except ! [term] [s] = true]

(b) Fluent definition for leaderAtTermServ.

module currentLeaderT
Init Δ

= v3 = [x0 ∈ Server ↦→ [x1 ∈ N ↦→ false]]
GetEntries (s1, s2)

Δ
= v3′ = [v3 except ! [s1] = [x0 ∈ N ↦→ false]]

RollbackEntries (s1, s2)
Δ
= v3′ = [v3 except ! [s1] = [x0 ∈ N ↦→ false]]

BecomeLeader (s, term) Δ
= v3′ = [[v3 except ! [s] = [x0 ∈ N ↦→ false]] except ! [s] [term] = true]

(c) Fluent definition for currentLeader.

StateMachineSafety ≜ ∀c1, c2 ∈ committed : (c1.ind = c2.ind ) =⇒ c1 = c2

(d) The key safety property StateMachineSafety , or SMS for short.

𝜌c ≜ ∀i ∈ N : ∃t1 ∈ N : ∀t2 ∈ N : commitAtTermInd (t2, i ) =⇒ (t1 = t2)
𝜌∗l ≜ ∀t ∈ N : ∀s1, s2 ∈ Server :

(leaderAtTermServ (t, s1) ∧ leaderAtTermServ (t, s2)) =⇒ (s1 = s2)

(e) 𝜌c is the bridge formula for the Committed and Log components. 𝜌∗l is one conjunct of 𝜌l , the bridge
formula for the Log and StateTerm components.

Fig. 16. Definitions for the safety property and bridge formulas in the Mongo Static Raft protocol.

With our compositional framework, we inferred an inductive invariant forMSR semi-automatically.
We also used Endive in attempt to automatically infer each local inductive invariant. Endive com-
pleted successfully for one component and failed for two components, where the failures were also
because the tool could not eliminate all CTIs. We now describe our compositional inference effort
in detail for the four steps from Sec. 5.

Step (1) system decomposition.We decompose MSR into three components Committed , Log , and
StateTerm . The components respectively represent the set of commits, the log for each server, and
the state and term metadata for each server.

Step (2) bridge formula inference. The candidate contracts are ⟨true⟩StateLog ⟨𝜌l ⟩, ⟨𝜌l ⟩Log ⟨𝜌c⟩,
and ⟨𝜌c⟩Committed ⟨SMS ⟩. In Fig. 16e, we show the bridge formula 𝜌c as well as one exemplar
conjunct 𝜌∗l for the bridge formula 𝜌l . We show the entire bridge formula 𝜌l in Appendix I, Fig. 19.
We show the fluent definitions (transition systems only) for commitAtTermInd, leaderAtTermServ,
and currentLeader in Figures 16a, 16b, and 16c respectively. The definitions for the remaining fluents
are included in Appendix I.
The fluents commitAtTermInd and leaderAtTermServ use the once style as seen in the 2PC and

Toy-2PC protocols. These three fluents respectively represent whether a commit has happened at a
specific term and index, and whether a server has been elected leader at a specific term. The fluent
currentLeader, however, represents servers who believe themselves to be a leader at a specific term;
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Table 2. Comparison between global and compositional inductive invariant inference for Mongo Static Raft.

Specification Endive Time Proof Size Inv. Size
MSR (global) NA 1,686 17
Committed 19.80 61 2
Log NA 123 9
StateTerm NA 188 7

this may be more than one server in the case of a network partition. In the definition for this fluent
(Fig. 16c), a server believes itself to be a leader upon a BecomeLeader action, but no longer once its
log is updated via a GetEntries or RollbackEntries action.

Step (3) local inductive invariant inference. For each contract, we attempted to automatically infer
a local inductive invariant with Endive. Endive failed for the Log and StateTerm components,
but succeeded for the Committed component. For the two cases that Endive failed, we manually
constructed a local inductive invariant. We also include a TLAPS proof for all local inductive
invariants.
Step (4) global safety. By proof rules sfl-comp and hybrid-comp, the conjunction of the three

local inductive invariants is an inductive invariant for the entire MSR protocol. Furthermore, we
infer that the protocol is safe by rules sfl-safe and hybrid-safe.

Results. We summarize our results for each specification in Table. 2. We include the run-time for
Endive in seconds (Endive Time), unless the tool failed in which case we write NA. We also report
the size of the proof for the inductive invariant (Proof Size) and the number of conjuncts in the
invariant (Inv. Size). Similarly to the 2PC case study (Sec. 6.1), we count only the number of proof
steps when we report the proof size.

Discussion. Efficiency of invariant inference. Table. 2 shows that Endive fails for the global
inductive invariant inference task. In the compositional approach, Endive fails for the Log and
StateTerm components so we manually created local inductive invariants for these two components.
However, Endive completed successfully for the Committed component, which is smaller and
less complex than the other two components. Ultimately, we inferred an inductive invariant
semi-automatically with the compositional approach, which provides evidence that compositional
inductive invariant inference can be more efficient than global inference. This result also suggests
that the compositional approach may benefit from further research into system decomposition,
specifically for finding simpler components.
Proof conciseness. Table. 2 shows that the length of the TLAPS proof for each individual

component is shorter than the proof for the global invariant by an order of magnitude. This result
provides evidence that the proof for local inductive invariants may be shorter than the proofs
for global inductive invariants. We also point out that the local inductive invariants have fewer
conjuncts, but offer this observation as a rough, secondary metric.
Insights from compositional inference. Much like the 2PC case study, we found that the

artifacts from compositional inference provided valuable insights about the case study that are not
captured by the global inductive invariant. For example, consider 𝜌∗l in Fig. 16e, which is a conjunct
of the bridge formula 𝜌l . The formula 𝜌∗l represents the one leader per term property, which is a key
lemma at the heart of the correctness argument for Raft [40]. While this property does appear in the
global inductive invariant, the fact that it appears in the bridge formula 𝜌l offers the more specific
insight that one leader per term is guaranteed by the StateTerm component and assumed by the
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Kg ≜ ∀s ∈ Server : (state [s] = Secondary ∧ LastTerm (log [s]) = currentTerm [s]) =⇒
∨ ∃p ∈ Server :
∧ state [p] = Primary
∧ currentTerm [p] = currentTerm [s]
∧ LastTerm (log [p]) ≥ LastTerm (log [s])
∧ Len (log [p]) ≥ Len (log [s])

∨ ∃p ∈ Server :
∧ state [p] = Primary
∧ currentTerm [p] > currentTerm [s]

∨ ∀t ∈ Server : state [t] = Secondary

Kl ≜ ∀t1, t2, i ∈ N : ∀s ∈ Server :
(commitAtTermInd [t1] [i ] ∧ currentLeader [s] [t2] ∧ t1 ≤ t2) =⇒ log [s] [i ] = t1

Fig. 17. Kg is a conjunct from the global invariant and Kl is a conjunct from the local invariant for Log. Both
formulas specify when an entry must be present in the log.

Log component. This insight could provide the basis for modular optimizations to the protocol,
e.g., using a new leader election scheme in the StateTerm component that maintains the property.

The presence of important properties such as one leader per term in bridge formulas may also be
a reason that the local inductive invariant proofs are more concise than the global proof. Using
the Log component as an example, the intuition for this reasoning is that local inductive invariant
inference becomes simpler when it can assume key lemmas such as one leader per term, rather than
needing to infer them.
Simpler constraints in local invariants. We observe that local inductive invariants can

specify simpler constraints when compared with the global invariant. For example, consider the
conjunct Kg from the global invariant in Fig. 17. This conjunct specifies an intricate condition for
when an entry must appear in the logs of a secondary (non-primary) server. The purpose of this
conjunct is to help establish leader completeness properties in the induction proof. However, the
compositional approach avoids tying the log to leader completeness properties, which results in a
simpler constraint than Kg . The fact that the leader completeness properties do not depend on the
log is explicit in the compositional approach because the Log component assumes all its leader
completeness properties from the bridge formula 𝜌l . As a result, the local inductive invariant for
Log specifies simpler constraints on the log. We show the lone conjunct Kl that constrains the log
in Fig. 17.

7 Related Work
Many techniques exist for automatically inferring inductive invariants. Approaches include interpo-
lation [32], ICE learning [11], syntax-driven enumeration of invariants [19, 51, 50], and incremental
lemma learning [3, 15, 24, 25, 47]. Theoretical work based on the Hoare query model has shown
that the incremental approach–specifically with relative induction checks–can learn inductive
invariants exponentially faster than with induction checks alone [10]. A more recent approach,
based on the observation that counter examples to induction (CTIs) help inductive invariant infer-
ence algorithms to find new predicates and vice versa (duality), attempts to balance the search for
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CTIs and predicates to achieve progress theorems [44]. While the above techniques have certain
advantages, each one experiences scalability issues by attempting to infer an inductive invariant
for the transition relation of an entire system. In contrast, our compositional framework divides
the transition relation to improve the efficiency of inductive invariant inference. However, the
techniques above are complementary to our compositional framework because they can be used
for local inductive invariant inference.
Due to the limitations of fully automated inductive invariant inference, frameworks have been

proposed for assisting users in finding an inductive invariant. Ivy [43] and similar languages [49]
are popular frameworks that encourage a user to write specifications in a decidable fragment of
FOL. Kondo [54] is also a tool that requires user assistance, but is specifically designed to strike a
balance between automation and manual proof effort. Lamport describes a technique for finding
inductive invariants for TLA+ [28] in which a person manually finds CTIs using the TLC model
checker [52]. Each of these techniques also runs into scalability issues, both from to the manual
efforts involved and the fact that a user attempts to find a global inductive invariant for the entire
transition relation.

There is a large body of work for automating compositional verification for finite-state processes.
Beginning with the seminal paper of Cobleigh et al. [7], researchers have attempted to find ways
to learn and compute assumptions (which we call bridges), both explicitly [2, 5, 7, 18, 37] and
implicitly (symbolically) [4, 20]. While these techniques are powerful, they do not, in general, apply
to parameterized systems because they are inherently finite-state. Our framework allows assume-
guarantee contracts to be proved with local inductive invariants, which allows us to compositionally
verify parameterized systems.

The method of Owicki Gries [42], Rely-Guarantee Reasoning [22], and Concurrent Separation
Logic [39] are each assume-guarantee instances for proving properties of programs; however, we
are interested in verifying declarative specifications in this work.

Past Time Temporal Logic (PTL) [23] is a variant of temporal logic with operators that can specify
propositions that happened in the past. For example, the once operator specifies that a proposition
was true at least once in the past and can be seen as the past-time version of the eventually (♢)
temporal operator. The once operator is analogous to the once style fluents from the 2PC and
Toy-2PC protocols. However, the expressiveness of PTL (and LTL) with actions is limited, which
inspired the Fluent LTL specification language [13]. In our work, we introduce SFL that builds upon
Fluent LTL by including quantifiers and symbolic fluents that accept arguments. Ultimately, the
extensions in SFL make the language appropriate for specifying parameterized systems.

8 Limitations and Future Work
In this paper, we presented a compositional inductive invariant inference framework that is based
on a two layer assume-guarantee theory. As part of our presentation, we showed that the inference
rules for contract composition are sound. However, we leave a formal treatment of completeness
for future work. We also plan to investigate whether the inference rules have the cut elimination
property, which may reveal a technique for eliminating auxiliary variables from inductive invariants
that are inferred compositionally.
We created all bridge formulas in this paper manually because automated inference of bridge

formulas is a nontrivial task. In the future, we plan to create an algorithm for automatic inference of
bridge formulas, specifically for the SFL language. We also plan to investigate whether SFL is useful
for tasks besides compositional invariant inference. For example, we plan to explore whether we
can compute the weakest assumption [12] of a system in SFL, which may be useful for robustness
analysis [53].
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In our evaluation (Sec. 6), we were able to use compositional inductive invariant inference
to verify the Mongo Static Raft protocol semi-automatically. We automatically inferred a local
invariant for the smallest component, which suggests that our technique would benefit from more
granular decompositions. In the future, we plan to investigate techniques for both automated and
more granular decompositions. Ultimately, we plan to fully automate our compositional verification
framework in Sec. 5, in which decomposition, bridge formula inference, and local invariant inference
are all automated.
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interf-free
I ⊢ ⟨⟨A⟩⟩C1⟨⟨G⟩⟩

I ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩

trans-inv
I1 ⊢ ⟨⟨A⟩⟩C ⟨⟨R⟩⟩ I2 ⊢ ⟨⟨R⟩⟩C ⟨⟨G⟩⟩

I1 ∧ I2 ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩

Fig. 18. Basic inference rules for proving soundness of the composition rules.

Appendix
A Proof of Thm. 3.3
We now prove Thm. 3.3 which states: I ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ implies ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩.

Proof. Assume that I ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩. Using the inductive invariant proof method, the three
equations in Def. 3.2 establish (vars, Init ∧ A,Next ∧ A ∧ A′)p |= 2G . However, notice that
(vars, Init ∧ A,Next ∧ A ∧ A′)p is identical to (vars, Init ∧ A,Next ∧ A′)p , from which we can
infer ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ by Def. 3.1. □

B Proof of Soundness for State-Based Contract Composition
In this appendix, we show that the composition rules for the state-based theory are sound. Our
proofs are based on two observations, which we encode formally as inference rules. The first
observation is that components do not share state variables, and hence are interference-free. This
observation is captured by inference rule interf-free, which we present in Fig. 18. The second
observation, captured by inference rule trans-inv in Fig. 18, is that each individual component
has the transitivity of invariance property. We will now show that these two inference rules are
sound, which we will then use as lemmas to prove that the composition rules are sound.

Lemma B.1. interf-free is sound.

Proof. Suppose that I ⊢ ⟨⟨A⟩⟩C1⟨⟨G⟩⟩, then by definition we have the following three facts: (1)
Init1 ∧ A =⇒ I , (2) I ∧ Next1 ∧ A ∧ A′ =⇒ I ′, and (3) I =⇒ G . Our goal is to prove that
I ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩. Because Init1 ∧ Init2 ∧A =⇒ Init1 ∧A and also because of fact (1), we can
conclude initiation. Also, due to fact (3), I implies safety. Therefore, it remains to prove consecution.
We will prove consecution by the possible cases on the actions of C1 ∥ C2. The three cases for an

action a ∈ Act (C1 ∥ C2) are (i) a ∈ (Act C1) ∩ (Act C2), (ii) a ∈ Act C1 and a ∉ Act C2, or (iii)
a ∉ Act C1 and a ∈ Act C2. In each possible case, will prove consecution, i.e. that I ∧a∧A∧A′ =⇒
I ′.

(i) In this case, a =⇒ Next1. Consecution follows due to this as well as fact (2).
(ii) We have a =⇒ Next1 in this case as well, and therefore consecution also follows due to fact

(2).
(iii) In this case, a =⇒ SV (C1)′ = SV (C1), where SV (C1)′ = SV (C1) is an abuse of notation

that indicates that the state variables of C1 are unchanged. Furthermore, by Def. 3.2, we have
SV (I ) ⊆ SV (C1) which implies a =⇒ SV (I )′ = SV (I ). Finally, consecution follows
because I ∧ SV (I )′ = SV (I ) =⇒ I ′.

Therefore, we have shown I ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩ as desired. □

Lemma B.2. trans-inv is sound.

Proof. Suppose that I1 ⊢ ⟨⟨A⟩⟩C ⟨⟨R⟩⟩ and I2 ⊢ ⟨⟨R⟩⟩C ⟨⟨G⟩⟩. Then we have the following three
facts: (1) Init =⇒ I1 and Init =⇒ I2, (2) I1∧Next∧A∧A′ =⇒ I ′

1 and I2∧Next∧R∧R′ =⇒ I ′
2 ,

and (3) I1 =⇒ R and I2 =⇒ G . Our goal is to prove that I1 ∧ I2 ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩. Initiation and

, Vol. 1, No. 1, Article . Publication date: July 2025.



30 Ian Dardik and Eunsuk Kang

safety follow by facts (1) and (3) respectively. Then, the following equations establish consecution,
where the right-hand side column indicates the reason for each implication in parentheses.

I1 ∧ I2 ∧ Next ∧ A ∧ A′ (7)
=⇒ I1 ∧ R ∧ I2 ∧ Next ∧ A ∧ A′ (I1 =⇒ R) (8)
=⇒ I ′

1 ∧ R ∧ I2 ∧ Next (I1 ∧ Next ∧ A ∧ A′ =⇒ I ′
1 ) (9)

=⇒ I ′
1 ∧ R ∧ R′ ∧ I2 ∧ Next (I ′

1 =⇒ R′) (10)
=⇒ I ′

1 ∧ I ′
2 (I2 ∧ Next ∧ R ∧ R′ =⇒ I ′

2 ) (11)

In the equations above, the reasons in (8) and (10) follow due to fact (3), while the reasons in (9)
and (11) follow due to fact (2). □

The two lemmas above show that the interf-free and trans-inv inference rules (Fig. 18) are
sound. We will now use these two lemmas to show that the compositional inference rules (Fig. 5)
are sound. We also include a proof that naive-comp is sound for completness.

Theorem B.3. naive-comp is sound.

Proof. Suppose that I1 ⊢ ⟨⟨A⟩⟩C1⟨⟨R⟩⟩ and I2 ⊢ ⟨⟨R⟩⟩C2⟨⟨G⟩⟩. By Lemma B.1 and the fact that ∥
is commutative, we have I1 ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨R⟩⟩ and I2 ⊢ ⟨⟨R⟩⟩C1 ∥ C2⟨⟨G⟩⟩. Finally, the theorem
follows with Lemma B.2 by using the trans-inv rule on C1 ∥ C2. □

Theorem B.4. bridge-comp is sound.

Proof. Suppose that I1 ⊢ ⟨⟨A⟩⟩C1 ∥ B ⟨⟨R⟩⟩ and I2 ⊢ ⟨⟨R⟩⟩B ∥ C2⟨⟨G⟩⟩. By Lemma B.1 and the
fact that ∥ is commutative, we have I1 ⊢ ⟨⟨A⟩⟩C1 ∥ B ∥ C2⟨⟨R⟩⟩ and I2 ⊢ ⟨⟨R⟩⟩C1 ∥ B ∥ C2⟨⟨G⟩⟩.
Finally, the theorem follows with Lemma B.2 by using the trans-inv rule on C1 ∥ B ∥ C2. □

Theorem B.5. aux-comp is sound.

Proof. Suppose I1 ⊢ ⟨⟨A⟩⟩C1 ∥ B ⟨⟨R⟩⟩, I2 ⊢ ⟨⟨R⟩⟩B ∥ C2⟨⟨G⟩⟩, and Aux B . By Thm B.4 and
Thm. 3.3, we have ⊢ ⟨⟨A⟩⟩C1 ∥ B ∥ C2⟨⟨G⟩⟩. Finally, because Aux B , we have ⊢ ⟨⟨A⟩⟩C1 ∥ C2⟨⟨G⟩⟩
by Def. 3.4. □

C Proof of Thm. 4.5
We now prove Thm. 4.5 which states: Let 2𝜙 be an action invariant, then B(2𝜙) is an auxiliary
component.

Proof. Let ⟨⟨A⟩⟩C ⟨⟨G⟩⟩ be a state-based contract such that ⊢ ⟨⟨A⟩⟩C ∥ B(2𝜙)⟨⟨G⟩⟩; by Def. 3.4,
the proof obligation is to show that ⊢ ⟨⟨A⟩⟩C ⟨⟨G⟩⟩. Let C = (vars, Init,Next)p . By Def. 3.1 and the
definition of parallel composition, we can infer that (vars, Init ∧ A,Next ∧ A′)p ∥ B(2𝜙) |= 2G .
However, all actions in B(2𝜙) are enabled in every state, meaning that B(2𝜙) allows all possible
behaviors. We can therefore infer (vars, Init ∧ A,Next ∧ A′)p |= 2G , from which the theorem
follows by Def. 3.1. □

D Proof of Thm. 4.7
We now dedicate this appendix to proving that action invariants are semantically equivalent to
their transition system counterpart given by T . Formally, the proof obligation is to show that
L(2𝜙) = L(T (2𝜙)), where2𝜙 is an arbitrary action invariant. This is exactly what we will prove
in Thm. 4.7 at the end of this subsection; however, we first prove two helper lemmas.

Lemma D.1. There exists a unique state-based behavior in B(2𝜙) that corresponds to executing the
actions in 𝜎 .
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Proof. The behavior exists because all actions are always enabled in B(2𝜙) and the behavior is
unique because B(2𝜙) is deterministic. □

Lemma D.2. Let 𝜏 be the state-based behavior in B(2𝜙) that corresponds to executing the actions
in 𝜎 (by Lemma D.1). Then, 𝜎 |= 2𝜙 if and only if 𝜏 |= 2R(𝜙).

Proof. The proof obligation is to show that for all i ≥ 0, we have ∅ ⊢ 𝜎, i |= 𝜙 if and only if
∅ ⊢ 𝜏i |= R(𝜙). However, it suffices to prove the following stronger statement: for all well-formed
environments E (environments that assign values to the free variables in 𝜙) and for all i ≥ 0,
we have E ⊢ 𝜎, i |= 𝜙 if and only if E ⊢ 𝜏i |= R(𝜙). We will prove this statement by structural
induction for SFL over 𝜙 .
In the base case, we have 𝜙 = f (r ), where f = (s, v ,T ) is a fluent and r are arguments to the

fluent. Let a well-formed environment E and i ≥ 0 be given. Furthermore, let vi be the value of
the variable v in the state 𝜏i . Then, E ⊢ 𝜎, i |= f (r ) if and only if (f |𝜎0 . . . 𝜎i ) [r [E ]] if and only if
vi [r [E ]] if and only if E ⊢ 𝜏i |= R(f (r )).

Since 𝜙 is a non-temporal formula, it suffices to only consider non-temporal connectives for the
inductive step. In the case that 𝜙 = 𝜓1 ∨𝜓2, let a well-formed environment E (for 𝜙) and i ≥ 0
be given. E must also be well-formed for𝜓1 and𝜓2, since no free-variables are introduced by the
disjunction. Therefore, we can invoke the inductive hypothesis to show that E ⊢ 𝜎, i |= 𝜓1 if and
only if E ⊢ 𝜏i |= R(𝜓1) and also E ⊢ 𝜎, i |= 𝜓2 if and only if E ⊢ 𝜏i |= R(𝜓2). However, this allows
us to conclude that E ⊢ 𝜎, i |= 𝜙 if and only if E ⊢ 𝜏i |= R(𝜙) by the definition of 𝜙 and also the
definition of R over disjunctions. The remaining connectives are similar. □

We now provide a proof for Thm. 4.7, which states that for any action invariant 2𝜙 , we have
L(2𝜙) = L(T (2𝜙)).

Proof. We will prove that for any action-based behavior 𝜎 , 𝜎 |= 2𝜙 if and only if 𝜎 |= T (2𝜙).
Let 𝜏 be the state-based behavior in B(2𝜙) that corresponds to executing the actions in 𝜎 (by
Lemma D.1).

𝜎 |= 2𝜙 if and only if 𝜏 |= 2R(𝜙) By Lemma D.2.
𝜏 |= 2R(𝜙) if and only if 𝜏 |= T (2𝜙) By Def. 4.6.
𝜏 |= T (2𝜙) if and only if 𝜎 |= T (2𝜙) By the assumption that 𝜏 corresponds to 𝜎 in

B(2𝜙), and hence also T (2𝜙). For “only if”,
also because T (2𝜙) is deterministic.

Together, the equations above imply the intended result. □

E Proof of Thm. 4.10
We now prove Thm. 4.10 which states: I ⊢ ⟨𝛼⟩C ⟨𝛾⟩ implies ⊢ ⟨𝛼⟩C ⟨𝛾⟩

Proof. Assume that I ⊢ ⟨𝛼⟩C ⟨𝛾⟩. Then, from both Def. 4.9 and Thm. 3.3, we can infer that
⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C ∥ B(𝛾)⟨⟨R(𝛾)⟩⟩. Let B(𝛼) = (vars, Init,Next)p . By Def. 3.1 and the definition
of parallel composition we can infer (vars, Init ∧R(𝛼),Next ∧R(𝛼)′)p ∥ C ∥ B(𝛾) |= 2R(𝛾). By
Def. 4.6, we see that this is equivalent to the statement T (2𝛼) ∥ C ∥ B(𝛾) |= 2R(𝛾).
Now consider an action-based behavior 𝜎 such that 𝜎 |= T (2𝛼) ∥ C ; we will show that

𝜎 |= T (2𝛾) to complete the proof. Because B(𝛾) has every action enabled in all states, it must
also be the case that 𝜎 |= T (2𝛼) ∥ C ∥ B(𝛾). By Lemma D.1, there exists a unique state based
behavior 𝜏 in B(𝛾) that corresponds to 𝜎 . This in turn implies that 𝜏 |= T (2𝛼) ∥ C ∥ B(𝛾), which
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also implies that 𝜏 |= 2R(𝛾). Because 𝜏 |= B(𝛾) and 𝜏 |= 2R(𝛾), we can infer that 𝜏 |= T (2𝛾).
Finally, by the assumption that 𝜎 corresponds to 𝜏 , we see that 𝜎 |= T (2𝛾). □

F Soundness of Action-Based Contract Composition
Theorem F.1. Rule sfl-comp is sound.

Proof. Suppose that I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ and I2 ⊢ ⟨𝜌⟩C2⟨𝛾⟩. ByDef. 4.8, we also have I1 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥
C1 ∥ B(𝜌)⟨⟨R(𝜌)⟩⟩ and I2 ⊢ ⟨⟨R(𝜌)⟩⟩B(𝜌) ∥ C2 ∥ B(𝛾)⟨⟨R(𝛾)⟩⟩. Using the bridge-comp inference
rule (Thm. B.4), we can infer that I1 ∧ I2 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2 ∥ B(𝛾)⟨⟨R(𝛾)⟩⟩. Finally,
we see that I1 ∧ I2 ⊢ ⟨𝛼⟩C1 ∥ B(𝜌) ∥ C2⟨𝛾⟩ by Def. 4.8. □

Theorem F.2. Rule sfl-safe is sound.

Proof. Suppose that I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ and I2 ⊢ ⟨𝜌⟩C2⟨𝛾⟩. By Thm. F.1, we can infer I1∧I2 ⊢ ⟨𝛼⟩C1 ∥
B(𝜌) ∥ C2⟨𝛾⟩. By Def. 4.8, we also have I1 ∧ I2 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2 ∥ B(𝛾)⟨⟨R(𝛾)⟩⟩.
However, by Thm. 3.3, we can also infer ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2 ∥ B(𝛾)⟨⟨R(𝛾)⟩⟩. The
theorem then follows by Def. 4.8. □

G Proof of Thm. 4.13
We now prove Thm. 4.13 which states: I ⊢ ⟨𝛼⟩C ⟨G⟩ implies ⊢ ⟨𝛼⟩C ⟨G⟩

Proof. Assume that I ⊢ ⟨2𝛼⟩C ⟨G⟩. Then, from both Def. 4.9 and Thm. 3.3, we can infer that
⊢ ⟨⟨R(𝛼)⟩⟩B(2𝛼) ∥ C ⟨⟨G⟩⟩. By Def. 3.1 and the definition of parallel composition, we can also infer
(vars, Init ∧ R(𝛼),Next ∧ R(𝛼)′)p ∥ C |= 2G , where B(2𝛼) = (vars, Init,Next)p . By Def. 4.6,
we see that this is equivalent to the statement T (2𝛼) ∥ C |= 2G . Finally, the theorem is proved
by Def. 4.8. □

H Soundness of Hybrid Contract Composition
We now prove that the two inference rules hybrid-comp and hybrid-safe are sound.

Theorem H.1. The rule hybrid-comp is sound.

Proof. Suppose that I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ and I2 ⊢ ⟨𝜌⟩C2⟨G⟩. By Def. 4.8, we have I1 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥
C1 ∥ B(𝜌)⟨⟨R(𝜌)⟩⟩ and by Def. 4.11 we also have I2 ⊢ ⟨⟨R(𝜌)⟩⟩B(𝜌) ∥ C2⟨⟨G⟩⟩. Using the bridge-
comp inference rule (Thm. B.4), we can infer that I1 ∧ I2 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2⟨⟨G⟩⟩.
Finally, we see that I1 ∧ I2 ⊢ ⟨𝛼⟩C1 ∥ B(𝜌) ∥ C2⟨G⟩ by Def. 4.11. □

Theorem H.2. The rule hybrid-safe is sound.

Proof. Suppose that I1 ⊢ ⟨𝛼⟩C1⟨𝜌⟩ and I2 ⊢ ⟨𝜌⟩C2⟨G⟩. By Thm. H.1, we can infer I1 ∧ I2 ⊢
⟨𝛼⟩C1 ∥ B(𝜌) ∥ C2⟨G⟩. By Def. 4.11, we also have I1 ∧ I2 ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2⟨⟨G⟩⟩.
However, by Thm. 3.3, we can also infer ⊢ ⟨⟨R(𝛼)⟩⟩B(𝛼) ∥ C1 ∥ B(𝜌) ∥ C2⟨⟨G⟩⟩. The theorem then
follows by Def. 4.11. □

I Bridge and Fluent Definitions for Mongo Static Raft
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module committedThisTermT
Init Δ

= v4 = [x0 ∈ N ↦→ [x1 ∈ Server ↦→ false]]
BecomeLeader (s, term) Δ

=

v4′ = [x0 ∈ N ↦→ [x1 ∈ Server ↦→ false]]
CommitEntry (s, ind , term) Δ

=

v4′ = [v4 except ! [term] [s] = true]

(a) Fluent definition for committedThisTerm.

module globalCurrentTermT
Init Δ

= v5 = [x0 ∈ N ↦→ false]
BecomeLeader (s, term) Δ

=

v5′ = [[x0 ∈ N ↦→ false]
except ! [term] = true]

(b) Fluent definition for globalCurrentTerm.

module reqThisTermT
Init Δ

= v6 = [x0 ∈ Server ↦→ [x1 ∈ N ↦→ false]]
ClientRequest (s, term) Δ

=

v6′ = [v6 except ! [s] [term] = true]
GetEntries (s1, s2)

Δ
=

v6′ = [v6 except ! [s1] = [x0 ∈ N ↦→ false]]
RollbackEntries (s1, s2)

Δ
=

v6′ = [v6 except ! [s1] = [x0 ∈ N ↦→ false]]
BecomeLeader (s, term) Δ

=

v6′ = [x0 ∈ Server ↦→ [x1 ∈ N ↦→ false]]

(c) Fluent definition for reqThisTerm.

∧ ∀t ∈ N : ∀s ∈ Server : committedThisTerm (t, s) =⇒ globalCurrentTerm (t)
∧ ∀t ∈ N : ∀s ∈ Server : reqThisTerm (s, t) =⇒ currentLeader (s, t)
∧ ∀t ∈ N : ∀s ∈ Server : committedThisTerm (t, s) =⇒ currentLeader (s, t)
∧ ∀t ∈ N : ∀s ∈ Server : currentLeader (s, t) =⇒ leaderAtTermServ (t, s)
∧ ∀t1, t2 ∈ N : ∀s ∈ Server :
(leaderAtTermServ (t1, s) ∧ globalCurrentTerm (t2)) =⇒ (t1 ≤ t2)

∧ ∀t ∈ N : ∀s1, s2 ∈ Server :
(leaderAtTermServ (t, s1) ∧ leaderAtTermServ (t, s2)) =⇒ (s1 = s2)

(d) The entire bridge formula 𝜌l for the Log and StateTerm components, including the one leader per term
conjunct.

Fig. 19. Additional definitions for the MongoStaticRaft protocol.
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